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The Kramers–Kronig transformation has been extensively applied in optical spectroscopy to calculate the real compone
of an optical quantity from the imaginary component, such as the real refractive index from the imaginary component, or vic
versa. In this paper, the traditional proof of the Kramers–Kronig transformation, and its application to the complex refractiv
index, complex dielectric constant, and complex molar polarizability, are reviewed. Often the imaginary components of thes
quantities are fitted with standard lineshapes such as the Gaussian, Lorentzian, or Classical Damped Harmonic Oscilla
(CDHO) lineshapes. It is shown that the usual Gaussian and Lorentzian lineshapes do not meet the physical criteria of the
imaginary components nor the conditions of the Kramers–Kronig transformation since they are not odd functions o
wavenumber. However, the CDHO lineshape meets the physical criteria of the imaginary components of these optic
quantities and the Kramers–Kronig transformation. Modifications are presented that make the Gaussian and Lorentzian o
The Gaussian decays so fast that the modification is not needed in practice; however, the Lorentzian is much slower to de
and thus modification is necessary whenever fitting peaks below;250 cm21. Since the computational difference between the
usual Lorentzian and modified Lorentzian is negligible, the author recommends that only the modified Lorentzian be used wh
fitting bands with a Lorentzian lineshape.© 2001 Academic Press
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The Kramers–Kronig transformation was developed i
pendently by Kramers (1) and Kronig (2, 3) around 1927 an
is widely used in optical spectroscopy (4–8). Even though i
has been shown in the literature (1–3, 9–15) that causalit
(output cannot occur before input) ensures that for a li
response the conditions of the Hilbert and KK transformat
are satisfied by the complex refractive index (n̂(ñ) 5 n(ñ) 1
ik(ñ)) and complex dielectric constant (ê(ñ) 5 e9(ñ) 1
ie0(ñ)) spectra, the criteria that a lineshape must meet in o
o be a satisfactory lineshape to fit the imaginary compon
f these quantities have not been discussed. In this pape
hown that the commonly used Gaussian and Lorentzian
hapes do not meet the criteria of the imaginary compone
ptical properties. Modifications to these lineshapes are
ested to correct this defect. This is especially important w
tting low-wavenumber bands. It is also shown that the C
ical Damped Harmonic Oscillator (CDHO) lineshape (16),
ecently used to fit infrared absorption bands of liquids (17–
1), meets the criteria of the imaginary components of
ptical properties.

REVIEW OF THE TRADITIONAL PROOF

The traditional proof of the Kramers–Kronig transforma
relies on the Cauchy–Goursat integral theorem (22, 23), which
states
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on a simple closed contourC, then

R
C

f~ z!dz5 0.

et

f~ z! 5 g~ z! 1 ih~ z! 5 g~ x, y! 1 ih~ x, y!, [1]

herez 5 x 1 iy and g( x, y) and h( x, y) are real value
unctions, such thatf( z) is analytic (see appendix for a disc
ion of analytic functions) andf( z) 3 a as uzu 3 ` in either
he lower or upper half of the complex plane, wherea is a
onstant which may be complex. Without loss of generali
ill be assumed here that this is true on the upper half o
omplex plane. The lower half of the plane gives the s
quations but with a negative sign. The positive sign is ch
ince by convention both the real and imaginary componen
he optical properties are positive on the real axis. The c
sed in the proof is given in Fig. 1.
Consider the integral

R
C

f~ z! 2 a

z 2 v
dz, [2]
0022-2852/01 $35.00
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262 C. DALE KEEFE
whereC is the closed curve defined in Fig. 1 andv is the value
of x at a specific point on the real axis. Sincef( z) is analytic
andz–v is not zero on or interior toC, ( f( z) 2 a)/( z 2 v)
s also analytic on and interior toC given in Fig. 1 and by th
auchy–Goursat integral theorem the integral over this pa
ero.
Consider the limit asr3 `, the integral over this part of th

curve is 0 sincef( z) 2 a 3 0. Therefore, the sum of th
integral over the real axis and the semicircle centered abv
must also be zero:

E
2`

v2g f~ x! 2 a

x 2 v
dx 1 E

v1g

` f~ x! 2 a

x 2 v
dx

1 E
p

0 ~ f~v 1 geiu! 2 a!gie iu

geiu du 5 0 [3]

E
2`

v2g f~ x! 2 a

x 2 v
dx 1 E

v1g

` f~ x! 2 a

x 2 v
dx

1 i E
p

0

~ f~v 1 geiu! 2 a!du 5 0. [4]

Now consider the limit of this equation asg 3 0,

lim
g30FE

2`

v2g f~ x! 2 a

x 2 v
dx 1 E

v1g

` f~ x! 2 a

x 2 v
dx

1 i E
p

0

~ f~v 1 geiu! 2 a!duG
5 P E

2`

` f~ x! 2 a

x 2 v
dx 2 ip~ f~v! 2 a! 5 0, [5]

FIG. 1. The closed curve,C, in the complexxy plane, used to prove th
Hilbert transform. The arrows give the direction of the integration.r is the
adius of the semicircle centered at the origin andg is the radius of th

semicircle centered atv.
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(23). Separating the real and imaginary parts, one obtain

g~v! 2 Re~a! 5
1

p
P E

2`

` h~ x! 2 Im~a!

x 2 v
dx [6]

h~v! 2 Im~a! 5 2
1

p
P E

2`

` g~ x! 2 Re~a!

x 2 v
dx. [7]

Usually, these equations are applied to the special
wherea, the limit of f( z) asuzu3 `, is a real quantity and thu
Re(a) 5 g` and Im(a) 5 0, giving

g~v! 2 g` 5
1

p
P E

2`

` h~ x!

x 2 v
dx [8]

h~v! 5 2
1

p
P E

2`

` g~ x! 2 g`

x 2 v
dx. [9]

These equations are called the Hilbert transforms in the c
istry and physics literature (11). If f( x) 5 f *( 2x), where *
represents the complex conjugate (in other words,g( x) is an
even function andh( x) is an odd function), then Eqs. [6] a
[7] become

g~v! 2 Re~a! 5
2

p
P E

0

` x~h~ x! 2 Im~a!!

x2 2 v 2 dx [10]

h~v! 2 Im~a! 5 2
2v

p
P E

0

` g~ x! 2 Re~a!

x2 2 v 2 dx [11]

and the special case wherea, the limit of f( z) as uzu 3 `, is
a real quantity gives

g~v! 2 g` 5
2

p
P E

0

` xh~ x!

x2 2 v 2 dx [12]

h~v! 5 2
2v

p
P E

0

` g~ x! 2 g`

x2 2 v 2 dx. [13]

These are known as the Kramers–Kronig (KK) transform
the chemistry and physics literature. The Hilbert transf
doesnot require the real part of the functionf to be even an
he imaginary part to be odd. This is a requirement of the
ransform, but this has not been clear in the literature.
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263LINESHAPE RESTRICTIONS DUE TO CAUSALITY
a special case of it. It should also be noted that the rea
need only be even and the imaginary part need only be o
the real axis, not over the entire upper half of the com
plane.

Extension of the Hilbert and KK Transforms to Nonanaly
Functions

If a function is analytic everywhere on and interior to
closed curveC, except for a finite number of singular poin
z1, z2, . . . , zn, interior to C, then (22, 23)

R
C

f~ z!dz5 2pi O
i51

n

Bi, [14]

whereBi is the residue (22, 23) of f( z) atzi . If the sum of thes
residues is zero, then all the arguments developed above
analytic function will apply tof( z) as well.

The requirements for the KK transform, given by Eqs.
and [13] to hold, can be summarized as follows:

(1) The function must be analytic over the upper half
lower half) of the complex plane or the sum of the residue
the singular points must be zero.

(2) The function must go to a real constant as the com
variablez goes to infinity.

(3) The real part of the function must be even and
imaginary part must be odd on the real axis.

The Hilbert transform, given by Eqs. [8] and [9], only requ
the first two criteria.

APPLICATION TO THE REFRACTIVE INDEX,
DIELECTRIC CONSTANT, AND MOLAR

POLARIZABILITY

As is mentioned in the introduction, it has been shown in
literature that causality (output can not occur before in
ensures that for a linear response, the conditions of the H
and KK transformations are satisfied by the complex refra
index (n̂(ñ) 5 n(ñ) 1 ik(ñ)) and complex dielectric consta
ê(ñ) 5 e9(ñ) 1 ie0(ñ)) spectra. The resulting equations

the Hilbert transform are

n~ñ j! 2 n` 5
1

p
P E

2`

` k~ñ!

ñ 2 ñ j
dñ [15]

k~ñ j! 5 2
1

p
P E

2`

` n~ñ! 2 n`

ñ 2 ñ j
dñ [16]
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e9~ñ j! 2 e` 5
p

P E
2`

ñ 2 ñ j
dñ [17]

e0~ñ j! 5 2
1

p
P E

2`

` e9~ñ! 2 e`

ñ 2 ñ j
dñ [18]

nd the resulting equations for the KK transform are

n~ñ j! 2 n` 5
2

p
P E

0

` ñk~ñ!

ñ 2 2 ñ j
2 dñ [19]

k~ñ j! 5 2
2ñ j

p
P E

0

` n~ñ! 2 n`

ñ 2 2 ñ j
2 dñ [20]

e9~ñ j! 2 e` 5
2

p
P E

0

` ñe0~ñ!

ñ 2 2 ñ j
2 dñ [21]

e0~ñ j! 5 2
2ñ j

p
P E

0

` e9~ñ! 2 e`

ñ 2 2 ñ j
2 dñ. [22]

The application of the KK and Hilbert transforms to
complex molar polarizability has not been previously sho
The Lorentz–Lorenz Formula (24) gives the connection b
tween the dielectric constant and the polarizability

ê 2 1

ê 1 2
5

4p

3
Nâ, [23]

where N is the number of molecules in unit volume. T
elation is usually only applied where the substance is no
orbing but it is applicable at frequencies where absor
ccurs as long as the complex dielectric constant and com
olarizability are used.
The complex polarizability,â, is a molecular quantity an

one normally works with the more convenient complex m
polarizability, defined (16) as

âm 5 NAâ, [24]

whereNA is Avogadro’s number. The complex molar pola-
ability is related byâm 5 VmĈ, to the complex local susce-
ibility, Ĉ, that was defined by Clifford and Crawford (25),
hereVm is the molar volume (Vm 5 NA/N for a pure liquid)
Equations [23] and [24] yield the equations through wh

the real and imaginary molar polarizabilities are calcul
from ê, viz.:
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m 4p @e9 1 2# 2 1 e0 2

a 0m 5
9Vm

4p

e0

@e9 1 2# 2 1 e0 2 . [26]

The complex molar polarizability will be analytic eve
where except where the denominator in Eqs. [23], [25],
[26] is zero. The denominator is zero ife9 5 22 ande0 5 0.

his is not a physically meaningful condition and the com
olar polarizability is an analytic function ofñ. Usingê(ñ) 3

e` 5 n`
2 as uñu 3 `, and Eqs. [25] and [26], one obtains

am,` 5
3Vm

4p

@e` 2 1#

@e` 1 2#
. [27]

Thus, the conditions of the Hilbert transform are satisfie
the complex molar polarizability and Eqs. [8] and [9] beco

a9m~ñ j! 2 am,` 5
1

p
P E

2`

` a 0m~ñ!

ñ 2 ñ j
dñ [28]

a 0m~ñ j! 5 2
1

p
P E

2`

` a9m~ñ! 2 a9m,`

ñ 2 ñ j
dñ. [29]

Using the fact thatê(ñ) 5 ê*( 2ñ) and Eqs. [25] and [26
it is a matter of simple algebra to show thatâm(ñ) 5
âm*( 2ñ). Thus, the conditions for the KK transform a
satisfied and Eqs. [12] and [13] become

a9m~ñ j! 2 am,` 5
2

p
P E

0

` ña 0m~ñ!

ñ 2 2 ñ j
2 dñ [30]

a 0m~ñ j! 5 2
2ñ j

p
P E

0

` a9m~ñ! 2 am,`

ñ 2 2 ñ j
2 dñ. [31]

FITTING THE IMAGINARY COMPONENT

The Gaussian, Lorentzian, and CDHO lineshapes are
used to fit the imaginary component of one of the op
properties (refractive index, dielectric constant, or molar
larizability, etc.). The application of the KK transform to th
optical properties was reviewed above and when one ch
a function to fit experimental data, one must ensure tha
function meets the requirements of the optical properties
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The complex Gaussian lineshape can be defined as

h~ z! 5 A0ReHexpS2~ z 2 z0!
2

b DJ
5 A0expS2~ x 2 x0!

2 1 ~ y 2 y0!
2

b D
3 cos~2~ x 2 x0!~ y 2 y0!!,

[32]

whereA0, b, andz0 are constants. This function gives the us
Gaussian lineshape wheny 5 y0 5 0:

h~ x! 5 A0expS2~ x 2 x0!
2

b D . [33]

The function given by Eq. [32] does not match the prope
of the imaginary components of the optical quantities discu
above, since it is not odd and therefore is not a suit
function to use to represent the imaginary component of
optical properties. To make the function odd one needs t
the difference of two Gaussians centered atz0 5 x0 1 iy 0 and
2z0 5 2x0 2 iy 0. Thus, Eq. [32] becomes

h~ z! 5 A0ReHexpS2~ z 2 z0!
2

b D 2 expS2~ z 1 z0!
2

b DJ
5 A0expS2~ x 2 x0!

2 1 ~ y 2 y0!
2

b D
3 cos~2~ x 2 x0!~ y 2 y0!!

2 A0expS2~ x 1 x0!
2 1 ~ y 1 y0!

2

b D
3 cos~2~ x 1 x0!~ y 1 y0!!,

[34]

which reduces to

h~ x! 5 A0HexpS2~ x 2 x0!
2

b D 2 expS2~ x 1 x0!
2

b DJ [35]

when y 5 y0 5 0.
It is a straightforward application to differentiate the fu

tion given in Eq. [34] twice and show that it is a harmo
function and therefore is suitable as the imaginary compo
of an analytic function (see appendix). This function goe
zero, asuzu 3 `, and is odd on the real axis and theref
matches the properties of the imaginary components o
optical properties and is a suitable function to use to fit th
This does not address the question of whether the bands
of the experimental spectra are Gaussian; it simply mean
the Gaussian function has the correct mathematical prop
to be used as a fitting function. Since the real part that c
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265LINESHAPE RESTRICTIONS DUE TO CAUSALITY
sponds to Eq. [34] is calculated by the KK transform, i
forced to meet the requirements of the KK transform.

The Gaussian decays very quickly and thus for all prac
purposes fitting the imaginary component forx . 0 with Eqs
33] and [35] are equivalent,evenwhen the peak is extreme
lose to zero. Figure 2 shows the plots of Eqs. [33] and [35
peak at 50 cm21 with a full width at half-height of 20 cm21.

The two curves cannot be distinguished. Even for a peak
cm21 with a FWHH of 0.1 cm21, the differences between t
two equations are on the order of 10220% or less for positivex
values. Thus, using the Gaussian defined by Eq. [33] to fi
imaginary component of one of the optical quantities forx .
0 is satisfactory with regard to meeting the criteria of
physical properties of the optical quantities discussed ab

Application to the Lorentzian Lineshape

The complex Lorentzian lineshape can be defined as

h~ z!

5 ReH A0

b2 1 ~ z 2 z0!
2J

5
A0@~ x 2 x0!

2 2 ~ y 2 y0!
2 1 b2#

@~ x 2 x0!
2 2 ~ y 2 y0!

2 1 b2# 2 1 4~ x 2 x0!~ y 2 y0!
,

[36]

whereA0, b, andz0 are constants. This function gives the us
Lorentzian lineshape wheny 5 y0 5 0:

FIG. 2. The usual Gaussian as given by Eq. [33] and the mod
aussian as given by Eq. [35] for a peak at 50 cm21 with a full width at

half-height of 20 cm21. The two are superimposed.
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b2 1 ~ x 2 x0!
2

As is the case for the Gaussian, the function given by Eq.
does not meet the requirements for the KK transformation
the properties of the optical quantities discussed above, si
is not odd. To make the function odd one needs to us
difference of two Lorentzians centered atz0 and2z0. Thus Eq
[36] becomes

h~ z!

5
A0@~ x 2 x0!

2 2 ~ y 2 y0!
2 1 b2#

@~ x 2 x0!
2 2 ~ y 2 y0!

2 1 b2# 2 1 4~ x 2 x0!~ y 2 y0!

2
A0@~ x 1 x0!

2 2 ~ y 1 y0!
2 1 b2#

@~ x 1 x0!
2 2 ~ y 1 y0!

2 1 b2# 2 1 4~ x 1 x0!~ y 1 y0!
,

[38]

which reduces to

h~ x! 5 A0H 1

~ x 2 x0!
2 1 b2 2

1

~ x 1 x0!
2 1 b2J [39]

when y 5 y0 5 0.
The function given in Eq. [38] has singular points in

upper half-plane atz1 5 z0 2 ib andz2 5 z0 1 ib. It can be
hown (22, 23) that if f( z) 5 P( z)/Q( z), where P( z) and

FIG. 3. The usual Lorentzian (upper curve) as given by Eq. [37] an
modified Lorentzian as given by Eq. [39], for a peak at 50 cm21 with a full
width at half-height of 20 cm21.
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Q( z) are analytic and ifz1 is a singular point off( z) and
Q9( z1) Þ 0, then the residue off( z) at z1(B1) is given by

B1 5
P~ z1!

Q9~ z1!
. [40]

Let P( z) 5 A0 and Q( z) 5 b2 1 ( z 2 z0)
2, thusQ9( z) 5

2(z 2 z0) and

B1 5
2A0

2ib
and B2 5

A0

2ib
. [41]

herefore, the sum of the residues is zero for the function g
n Eq. [38]. The function goes to zero asz3 ` and is odd o
he real axis. Thus, the function given in Eq. [38] is a suit
unction to use to fit the imaginary component of the op
roperties. Since the real part that corresponds to Eq. [3
alculated by the KK transform, it is forced to meet
equirements of the KK transform.

Figure 3 shows the plots of Eqs. [37] (upper curve) and
lower curve) for a peak at 50 cm21 with a full width at
alf-height of 20 cm21. The differences are obvious in t

wings to low wavenumber of the peak, but there are
differences in the peak maxima and high wavenumber w
Figure 4 shows the difference between the two curves
percentage of the peak height of the curve given by Eq.
The difference varies from 0.44 to 3.8% of the peak he

FIG. 4. The difference between the usual Lorentzian given by Eq. [37
the modified Lorentzian given by Eq. [39], expressed as a percentage
peak height of the usual Lorentzian, for the peaks shown in Fig. 3
modified Lorentzian is always lower than the usual Lorentzian.
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difference between Eqs. [37] and [39] decreases if the pe
at higher wavenumber. Figures 5–8 show analogous plo
Figs. 3 and 4 for peaks at 100 and 250 cm21 both with a full
width at half-height of 20 cm21. For the peak at 100 cm21 the
differences are about a factor of 4 smaller with a maxim
difference of 0.99%. For the peak at 250 cm21 the difference
are,0.16%. Thus using a Lorentzian defined by Eq. [37] t
the imaginary component of one of the optical properties is
satisfactory for peaks below 250 cm21. When fitting low wave-
number peaks, one needs to consider that the imaginary
ponent is odd and therefore the peak will be asymmetric. S
the computational difficulty for Eq. [37] and [39] is essentia
the same, the author recommends that only Eq. [39] be us
fitting with Lorentzian lineshapes.

Application to the CDHO Lineshape

The CDHO lineshape is defined (16) on the real axis by

f~ x! 5 A0 1
B

x0
2 2 x2 2 ixC

, [42]

whereA0, B, andC are constants. The complex extension

f~ z! 5 A0 1
B

z0
2 2 z2 2 izC

[43]

FIG. 5. The usual Lorentzian, given by Eq. [37], and the modified Lor
zian, given by Eq. [39], for a peak at 100 cm21 with a full width at half-heigh
of 20 cm21. The two are superimposed on the scale shown.
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267LINESHAPE RESTRICTIONS DUE TO CAUSALITY
with the real and imaginary components given by

g~ x, y! 5 A0 1
B~ x0

2 2 y0
2 2 x2 1 y2 1 yC!

~ x0
2 2 y0

2 2 x2 1 y2 1 yC! 2

1 ~2x0y0 2 2xy 2 xC! 2

[44]

h~ x, y! 5
2B~2x0y0 2 2xy 2 xC!

~ x0
2 2 y0

2 2 x2 1 y2 1 yC! 2

1 ~2x0y0 2 2xy 2 xC! 2

, [45]

which gives the usual CDHO lineshapes on the real axisy 5
y0 5 0):

g~ x! 5 A0 1
B~ x0

2 2 x2!

~ x0
2 2 x2! 2 1 C2x2 [46]

h~ x! 5
BCx

~ x0
2 2 x2! 2 1 C2x2 . [47]

It is a relatively simple task to show that the functions gi
by Eqs. [44] and [45] satisfy the Cauchy–Riemann equa
(see appendix), and thus the function given by Eq. [43
analytic. Equation [43] goes toA0 as uzu 3 `, and by subst-
tuting2x into Eqs. [46] and [47], one can see that the real
g( x), is even on the real axis and that the imaginary part,h( x),
is odd on the real axis. Thus the CDHO bandshape match

FIG. 6. The difference between the usual Lorentzian given by Eq. [37
the modified Lorentzian given by Eq. [39], expressed as a percentage
peak height of the usual Lorentzian, for the peaks shown in Fig. 5
modified Lorentzian is always lower than the usual Lorentzian.
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is a suitable function to use to fit the imaginary componen
these optical constants at any wavenumber.

SUMMARY

In this paper, the traditional proof of the Kramers–Kro
transformation and its application to the complex refrac
index, complex dielectric constant, and complex molar p
izability were reviewed. The requirements for the KK tra
form to hold can be summarized as follows:

(1) The function must be analytic over the upper half
lower half) of the complex plane or the sum of the residue
the singular points must be zero.

(2) The function must go to a real constant as the com
variablez goes to infinity.

(3) The real part of the function must be even and
imaginary part must be odd on the real axis.

The Hilbert transform only requires the first two criteria.
It has been shown in the literature that the complex re

tive index and complex dielectric constant both satisfy t
criteria. It was shown in this paper that the complex m
polarizability satisfies these criteria. Since the KK transf
applies to these quantities, any lineshapes used to fit them
also meet these criteria. It was shown that the usual Gau
and Lorentzian functions do not meet these criteria bec
they are not odd functions. This is not significant for
Gaussian lineshape but it is significant for low wavenum

FIG. 7. The usual Lorentzian, given by Eq. [37], and the modified Lor
zian, given by Eq. [39], for a peak at 250 cm21 with a full width at half-heigh
of 20 cm21. The two are superimposed on the scale shown.
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268 C. DALE KEEFE
peaks for the Lorentzian lineshape. However, the Loren
lineshape can be made odd by considering the differen
two peaks centered atx0 and2x0. It was also shown in th
paper that the CDHO lineshape meets all the criteria of the
transformation and the optical quantities.

APPENDIX

Analytic Functions

This appendix presents a brief overview of analytic fu
ions. For a more complete discussion, the reader is refer

text on complex analysis such as Refs. (22) and (23). A
unction f( z), wherez 5 x 1 iy, is definedto be analytic a
a pointz0 if df/dz exists not only atz0 but also at every poin

in some neighborhood ofz0. It should be noted thatf( z) can
always be considered to be the sum of two real valued
tions g and h according to Eq. [1]. The fact that the par

erivatives ofg and h with respect tox and y (i.e., g/ x,
g/ y, h/ x, h/ y) exist is not sufficient to guarantee t
df/dz exists and thus can not guarantee thatf is analytic. Forf
to be analytic the functionsg andh must satisfy the Cauchy
Riemann equations

g

 x
5

h

 y
[A1]

FIG. 8. The difference between the usual Lorentzian given by Eq. [37
the modified Lorentzian given by Eq. [39], expressed as a percentage
peak height of the usual Lorentzian, for the peaks shown in Fig. 7
modified Lorentzian is always lower than the usual Lorentzian.
Copyright © 2001 by
n
of

K

-
to
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 y  x

It can also be shown that for a functionf to be analytic in
omainD, its component functions (g and h) must behar-
onic in D, where a function,w( x, y), is defined to b

harmonic if its satisfies Laplace’s equation

 2w

 x2 1
 2w

 y2 5 0. [A3]

If a function f( z) fails to be analytic at a pointz0, but is
analytic at some point in every neighborhood ofz0, thenz0 is
called asingular pointof f.
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