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Curvefitting Imaginary Components of Optical Properties:
Restrictions on the Lineshape Due to Causality
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The Kramers—Kronig transformation has been extensively applied in optical spectroscopy to calculate the real component
of an optical quantity from the imaginary component, such as the real refractive index from the imaginary component, or vice
versa. In this paper, the traditional proof of the Kramers—Kronig transformation, and its application to the complex refractive
index, complex dielectric constant, and complex molar polarizability, are reviewed. Often the imaginary components of these
quantities are fitted with standard lineshapes such as the Gaussian, Lorentzian, or Classical Damped Harmonic Oscillator
(CDHO) lineshapes. It is shown that the usual Gaussian and Lorentzian lineshapes do not meet the physical criteria of these
imaginary components nor the conditions of the Kramers—Kronig transformation since they are not odd functions of
wavenumber. However, the CDHO lineshape meets the physical criteria of the imaginary components of these optical
quantities and the Kramers—Kronig transformation. Modifications are presented that make the Gaussian and Lorentzian odd.
The Gaussian decays so fast that the modification is not needed in practice; however, the Lorentzian is much slower to decay
and thus modification is necessary whenever fitting peaks bel®80 cm*. Since the computational difference between the
usual Lorentzian and modified Lorentzian is negligible, the author recommends that only the modified Lorentzian be used when
fitting bands with a Lorentzian lineshape: 2001 Academic Press
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INTRODUCTION If a complex functiorf is analytic at all points interior to and
on a simple closed conto@, then

The Kramers—Kronig transformation was developed inde-
pendently by Kramerslj and Kronig @, 3) around 1927 and
is widely used in optical spectroscop§+8). Even though it % f(z)dz= 0.
has been shown in the literaturé—3, 9-15 that causality
(output cannot occur before input) ensures that for a linear
response the conditions of the Hilbert and KK transformations
are satisfied by the complex refractive indéX#) = n(?) + Let
ik(v)) and complex dielectric constang(@) = €'(v) +
ie”(v)) spectra, the criteria that a lineshape must meet in order f(z) = g(z) + ih(2) = g(x, y) + ih(x, y), (1]
to be a satisfactory lineshape to fit the imaginary components
of these quantities have not been discussed. In this paper, it is i
shown that the commonly used Gaussian and Lorentzian lif¢2€r€z = x + iy andg(x, y) andh(x, y) are real valued
shapes do not meet the criteria of the imaginary componentgigictions, such th&i(2) is analytic (see appendix for a discus-
optical properties. Modifications to these lineshapes are s Of analytic functions) anf{z) — a as|z| — = in either
gested to correct this defect. This is especially important whE#f 1ower or upper half of the complex plane, wheres a
fitting low-wavenumber bands. It is also shown that the Cla§onstant which may be complex. Without loss of generality, i
sical Damped Harmonic Oscillator (CDHO) lineshapi)( will be assumed here that this is true on the upper half of th
recently used to fit infrared absorption bands of liquiigz{ C°MPlex plane. The lower half of the plane gives the sam

21), meets the criteria of the imaginary components of tfRAuations but with a negative sign. The positive sign is chose
optical properties. since by convention both the real and imaginary components

the optical properties are positive on the real axis. The cury
used in the proof is given in Fig. 1.

C

REVIEW OF THE TRADITIONAL PROOF Consider the integral
The traditional proof of the Kramers—Kronig transformation f(z) — a
relies on the Cauchy—Goursat integral theor@@, 3, which E——r 2 [2]
states c
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262 C. DALE KEEFE

whereP stands for the Cauchy Principal value of the integra
(23). Separating the real and imaginary parts, one obtains

“ h(x) — Im(a) dx

1
g<w>—Re<a)=WPf — (6]

—x

“QW)—Rdmdx

1
hmywmm=—wpf — [7]

—

—_— e X . . .
® Usually, these equations are applied to the special ca
FIG. 1. The closed curveC, in the complexxy plane, used to prove the wherea, the limit of f(z) as|z| — o, is a real quantity and thus
Hilbert transform. The arrows give the direction of the integrationis the  Re(@) = g, and Im@) = 0, giving
radius of the semicircle centered at the origin apds the radius of the
semicircle centered ab.

“ h(x)
whereC is the closed curve defined in Fig. 1 aads the value 9(w) —g. = T P X— dx (8]
of x at a specific point on the real axis. Sini§e) is analytic o
andz—w is not zero on or interior t&€, (f(z) — a)/(z — w)
is also analytic on and interior 16 given in Fig. 1 and by the 1 * g(X) — g
Cauchy—Goursat integral theorem the integral over this path is h(w) = - - P f X —w dx. 0]
zero. -

Consider the limit ap — «, the integral over this part of the
curve is 0 sincef(z) — a — 0. Therefore, the sum of the These equations are called the Hilbert transforms in the cher
integral over the real axis and the semicircle centered abouistry and physics literaturel(). If f(x) = f*(—x), where *

must also be zero: represents the complex conjugate (in other wogds) is an
even function andh(x) is an odd function), then Egs. [6] and
7 f(x) —a = f(x) —a [7] become
———dx+ ———dx
X— X—
- o 2 (= x(h(x) — Im(a))
; . g(w) —Re@a) = —P | ——5 5 —dx (10]
O (f(w + ye'’) — a)yie' m X"— o
+ % doe=0 [3] 0
ve
20 [ 7 g(x) — Re(a)
v=Yf(x) — a = f(x) —a h(w) — Im(a) = _WPJ e dx [11]
—dx + —— dx 0
X—w X—w
—% w+y
and the special case wheag the limit of f(z) as|z| — =, is
0 . .
L J (f(w + ye') — a)do = 0. [4] a real quantity gives
! 2 “ xh(x)
Now consider the limit of this equation as— 0, 9(w) = 9. =P | ‘7 7dx [12]
0
i ﬁwum—ad+fmﬂm—ad
im — X — X 2w “g(x) — g.
=0 J X w oty X ® h(a)) = —? P j ﬁ dx. [13]

0

These are known as the Kramers—Kronig (KK) transforms i
the chemistry and physics literature. The Hilbert transforn

T

+i j (f(w + ye'’) — a)dO]

= f(x) — a doesnot require the real part of the functidnto be even and
=P = o X~ im(f(ew) —a)=0, [5] the imaginary part to be odd. This is a requirement of the Kk
—o transform, but this has not been clear in the literature. Th
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LINESHAPE RESTRICTIONS DUE TO CAUSALITY 263

Hilbert transform is the more general transform and the KK is 1 = (D)

a special case of it. It should also be noted that the real part €M) —e.=—P J ——dp [17]
need only be even and the imaginary part need only be odd on S

the real axis, not over the entire upper half of the complex
plane.

8

1
6”(5j) = —; PJ = dp [18]

Extension of the Hilbert and KK Transforms to Nonanalytic
Functions

If a function is analytic everywhere on and interior to @nd the resulting equations for the KK transform are
closed curveC, except for a finite number of singular points,

2y, Z5, . . ., Zy, interior toC, then @2, 23 2 )
n(T/,-) — N, = ; P J W dv [19]

]

0
fﬁ f(z)dz= 2= >, B, [14]
c i=1 . 27, “n(») —n, _
k(VJ-) = _? P ﬁ dv [20]
J

whereB; is the residueZ2, 23 of f(z) atz. If the sum of these °

residues is zero, then all the arguments developed above for an
analytic function will apply tof(z) as well. . 2 cve(v)

The requirements for the KK transform, given by Egs. [12] €() - e=_P f v2— 7 dv [21]
and [13] to hold, can be summarized as follows: 0

(1) The function must be analytic over the upper half (or 2%, = e'(7) — e
lower half) of the complex plane or the sum of the residues at €'(¥) = — “h P J % dy. [22]
the singular points must be zero. 77 g

(2) The function must go to a real constant as the complex

variablez goes to infinity. o .
(3) The real part of the function must be even and thée The application of the KK and Hilbert transforms to the

. . ; « be odd on th | axi omplex molar polarizability has not been previously shown
'maginary part must be odd on the real axis. The Lorentz—Lorenz Formula24) gives the connection be-
The Hilbert transform, given by Egs. [8] and [9], only require§veen the dielectric constant and the polarizability

the first two criteria.

0

-1 4m
+2—?NO{, [23]

m>

m>

APPLICATION TO THE REFRACTIVE INDEX,

DIELECTRIC CONSTANT, AND MOLAR
POLARIZABILITY where N is the number of molecules in unit volume. This

relation is usually only applied where the substance is nonal

As is mentioned in the introduction, it has been shown in tt&®rbing but it is applicable at frequencies where absorptio
literature that causality (output can not occur before inpu@ccurs as long as the complex dielectric constant and compl.
ensures that for a linear response, the conditions of the Hilbpglarizability are used.
and KK transformations are satisfied by the complex refractive The complex polarizabilityq, is a molecular quantity and
index A(¥) = n(¥) + ik(¥)) and complex dielectric constantone normally works with the more convenient complex mola
(&(¥) = €'(¥) + i€"(P)) spectra. The resulting equations fopolarizability, defined 16) as
the Hilbert transform are

&m = NA&1 [24]
n(#) —n, = 1 p i Nk(ii dp [15] whereN, is Avogadro’s number. The complex molar polariz
: ™ LY ability is related bya,, = V,,C, to the complex local suscep

tibility, C, that was defined by Clifford and Crawfor@5),
whereV , is the molar volume\{,, = N4/N for a pure liquid).

N 1 “n) —n, _ Equations [23] and [24] yield the equations through whict
k() =——P ———=—dp [16] the real and imaginary molar polarizabilities are calculate:
T vl from &, viz.:
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264 C. DALE KEEFE

3V, [e — 1][e' + 2] + €' (25] Application to the Gaussian Lineshape
a;n = i ! 4 5
Am [e +2]2+ € The complex Gaussian lineshape can be defined as
9V ¢’ —(z2— 20 2)}
"o J h Z) = A R eX[{
(e A [G, ¥ 2]2+ e//z- [26] ( ) 0 e{ b
—(X = %) 2+ (Y — o)
o . = Asex [32]
The complex molar polarizability will be analytic every- b
where except where the denominator in Egs. [23], [25], and y o(x — _
[26] is zero. The denominator is zerodf = —2 ande” = 0. Cog2(X = Xo) (Y = ¥o)).

This is not a physically meaningful condition and the complex
molar polarizability is an analytic function 6 Using&(3) — whereA,, b, andz, are constants. ThIS function gives the usua
€. = n? as|¥| — =, and Egs. [25] and [26], one obtains Gaussian lineshape when=y, =

3V, [e. — 1] h(x) = A exp( —(x = %) 2) [33]
m L€ — = Ao R
4 [e. T 2] 271 °

O =

The function given by Eq. [32] does not match the propertie
Thus, the conditions of the Hilbert transform are satisfied yf the imaginary components of the optical quantities discusse
the complex molar polarizability and Egs. [8] and [9] becomabove, since it is not odd and therefore is not a suitabl

function to use to represent the imaginary component of the:

5 optical properties. To make the function odd one needs to u:
Taw(v) the difference of two Gaussians centeredqat X, + iy, and
—P ——=d 28 . 0 0

om(%) m J v — v [28] —Z, = —Xg — iYe. Thus, Eqg. [32] becomes

o , h(z) = AR %exp{ (Z_ZO)) p{ (Z+Z°) )}
e 1 an(?) — an.
an()=-=P —_—

C— dv. [29] i
_ ] —(X=X%0)?+ (y — yo)? )
= Agex| b
Using the fact thaé(¥) = &*(—7) and Egs. [25] and [26], X €o42(X — Xo) (Y — Yo)) [34]
it is a matter of simple algebra to show thati,(v) = (X + Xg) 2+ (Y + )2
an*(—7). Thus, the conditions for the KK transform are —Aoexp< 0 b 0 )
satisfied and Eqgs. [12] and [13] become

X co92(X + Xo) (Y + Vo)),

al (V) — ap. = 2 P fx M dv [30] Which reduces to
m\ ¥j m,» ar ~

h(x) = Ao{exp< (x _X°)> p( (X )} [35]
"(VJ)__"‘VJPJ”@Q(,;_ [31]

v Vi wheny =y, = 0.
It is a straightforward application to differentiate the func-
tion given in Eq. [34] twice and show that it is a harmonic
FITTING THE IMAGINARY COMPONENT function and therefore is suitable as the imaginary compone
of an analytic function (see appendix). This function goes t
The Gaussian, Lorentzian, and CDHO lineshapes are oftegro, as|zl — «, and is odd on the real axis and therefore
used to fit the imaginary component of one of the opticahatches the properties of the imaginary components of tt
properties (refractive index, dielectric constant, or molar poyptical properties and is a suitable function to use to fit themn
larizability, etc.). The application of the KK transform to thes&his does not address the question of whether the bandshaj
optical properties was reviewed above and when one chooséthe experimental spectra are Gaussian; it simply means tt
a function to fit experimental data, one must ensure that ttlee Gaussian function has the correct mathematical properti
function meets the requirements of the optical properties. to be used as a fitting function. Since the real part that corr
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LINESHAPE RESTRICTIONS DUE TO CAUSALITY 265

Ao
h(x) =

1 b2+ (X — x0)2" [37]

As is the case for the Gaussian, the function given by Eq. [3¢
does not meet the requirements for the KK transformation, nc

0.8 : . " . .

_ the properties of the optical quantities discussed above, since
-‘g is not odd. To make the function odd one needs to use tt
; difference of two Lorentzians centeredzaiand —z,. Thus Eq.
£06+ [36] becomes

g

>

.‘Z’J 0.4 "

E ] Ad(x = x0)? = (y — yo)* + b?]

[(X = X0)? = (Y = Yo) >+ b?]? + 4(X = Xo) (Y — Yo)

02 B Ad (X + X0)® = (y + o) * + b?]
[(X+ %)%= (Y + Yo 2+ b?]? + 4(X + X) (Y + Yo) '

o . ' . [38]

100 75 50 , 25 0 which reduces to
Wavenumber/cm’

FIG. 2. The usual Gaussian as given by Eq. [33] and the modified
Gaussian as given by Eq. [35] for a peak at 50 tmwith a full width at h(x) = Ao{
half-height of 20 cm®. The two are superimposed.

1
(X=X 2+ b2 (x+x0)2+ bz} [39]

wheny =y, =0

sponds to Eq. [34] is calculated by the KK transform, it is The function given in Eqg. [38] has singular points in the
forced to meet the requirements of the KK transform. upper half-plane at, = z, — ib andz, = z, + ib. It can be

The Gaussian decays very quickly and thus for all practicdfown @2, 23 that if f(z) = P(2)/Q(2), whereP(z) and
purposes fitting the imaginary component for- 0 with Egs.
[33] and [35] are equivalengvenwhen the peak is extremely
close to zero. Figure 2 shows the plots of Eqgs. [33] and [35] for
a peak at 50 cit with a full width at half-height of 20 cr.
The two curves cannot be distinguished. Even for a peak at 1
cm ' with a FWHH of 0.1 cm’, the differences between the
two equations are on the order of %6 or less for positivex
values. Thus, using the Gaussian defined by Eq. [33] to fit the 0.8 1
imaginary component of one of the optical quantitiesXor
0 is satisfactory with regard to meeting the criteria of the
physical properties of the optical quantities discussed above.

0.6 1

Application to the Lorentzian Lineshape

The complex Lorentzian lineshape can be defined as 0.4

h(z)

A, 024
- Re{bz +(z— 20)2}

_ Aol (X = X0)? = (Y — Yo)* + b?] 0 . . .
[(X = %0)2 = (Y = Yo) * + b?]* + 4(x — Xo)(y — Yo) ' 100 75 50 25 0
[36] Wavenumber / cm™

Intensity (arbitrary units)

. . . FIG. 3. The usual Lorentzian (upper curve) as given by Eq. [37] and the
whereA,, b, andz, are constants. This function gives the usughodified Lorentzian as given by Eq. [39], for a peak at 50 tmith a full

Lorentzian lineshape whepn = y, = 0: width at half-height of 20 crit.
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266 C. DALE KEEFE

4 with the usual Lorentzian given by Eq. [37] always higher. The
difference between Eqs. [37] and [39] decreases if the peak
354 at higher wavenumber. Figures 5-8 show analogous plots

Figs. 3 and 4 for peaks at 100 and 250 ¢rhoth with a full
width at half-height of 20 cnt. For the peak at 100 chthe
differences are about a factor of 4 smaller with a maximun
difference of 0.99%. For the peak at 250 Crthe differences

2.5 are<0.16%. Thus using a Lorentzian defined by Eq. [37] to fi
§ the imaginary component of one of the optical properties is nc
g 5l satisfactory for peaks below 250 cinWhen fitting low wave
£ number peaks, one needs to consider that the imaginary co
= 15 ponent is odd and therefore the peak will be asymmetric. Sinc
' the computational difficulty for Eq. [37] and [39] is essentially
the same, the author recommends that only Eq. [39] be used
11 fitting with Lorentzian lineshapes.
0.5 Application to the CDHO Lineshape
. The CDHO lineshape is defined®) on the real axis by
100 75 50 25 0
Wavenumber / cm™
FIG.4. The difference between the usual Lorentzian given by Eq. [37] and fO0 = Ao+ X2 — x2—ixC’ [42]
the modified Lorentzian given by Eq. [39], expressed as a percentage of the
peak height of the usual Lorentzian, for the peaks shown in Fig. 3. The
modified Lorentzian is always lower than the usual Lorentzian. whereA,, B, andC are constants. The complex extension is
Q(2) are analytic and ifz, is a singular point off(z) and f(2)=A+ 55—~ [43]
Q'(z,) # 0, then the residue d{z) atz,(B,) is given by zp—z°—izC
P(z,)
B,=—~ . 40
1T Q) 140
1 4
Let P(2) = A, andQ(2) = b® + (z — z,)% thusQ'(2) =
2(z — z,) and
0.8 -
—Ao Ao )
Bl = 72|b and Bz = T [41] g
2
: . o £ 061
Therefore, the sum of the residues is zero for the function given 5
in Eq. [38]. The function goes to zero as— « and is odd on g
the real axis. Thus, the function given in Eq. [38] is a suitable D
function to use to fit the imaginary component of the optical ig 041

properties. Since the real part that corresponds to Eq. [38] is
calculated by the KK transform, it is forced to meet the
requirements of the KK transform. 0.2
Figure 3 shows the plots of Egs. [37] (upper curve) and [39]
(lower curve) for a peak at 50 crhwith a full width at

half-height of 20 cm*. The differences are obvious in the 0 i ; )
wings to low wavenumber of the peak, but there are also 200 150 100 50 0
differences in the peak maxima and high wavenumber wings. Wavenumber / cm™

Figure 4 shows the difference between the two curves as %IG. 5. The usual Lorentzian, given by Eq. [37], and the modified Lorent-

percentage of the peak height of the curve given by Eq. [3%]an, given by Eq. [39], for a peak at 100 chwith a full width at half-height
The difference varies from 0.44 to 3.8% of the peak heightf 20 cm . The two are superimposed on the scale shown.
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0.9 41

0.8 1

0.7 1

0.6 1

0.5 1

% difference

0.4 4

0.3

0.2 1

0.1

O T T L]
200 150 100 50
Wavenumber / cm™

FIG.6. The difference between the usual Lorentzian given by Eq. [37] al
the modified Lorentzian given by Eq. [39], expressed as a percentage of

267

criteria of the optical properties and the KK transformation an
is a suitable function to use to fit the imaginary components c
these optical constants at any wavenumber.

SUMMARY

In this paper, the traditional proof of the Kramers—Kronig
transformation and its application to the complex refractive
index, complex dielectric constant, and complex molar polat
izability were reviewed. The requirements for the KK trans-
form to hold can be summarized as follows:

(1) The function must be analytic over the upper half (ol
lower half) of the complex plane or the sum of the residues ¢
the singular points must be zero.

(2) The function must go to a real constant as the comple
variablez goes to infinity.

(3) The real part of the function must be even and the
imaginary part must be odd on the real axis.

The Hilbert transform only requires the first two criteria.
It has been shown in the literature that the complex refrac
tive index and complex dielectric constant both satisfy thes

'ﬁiteria. It was shown in this paper that the complex mola

€

peak height of the usual Lorentzian, for the peaks shown in Fig. 5. TiRPlarizability satisfies these criteria. Since the KK transforn

modified Lorentzian is always lower than the usual Lorentzian.

with the real and imaginary components given by

B(x§ — y§— x*+y?+yC)

a(x, y):AO+(x§—y§—x2+y2+yC)2 [44]
+ (2XgYo — 2Xy — XC)?2
—B(2Xpy, — 2xy — xC
h(x, y) = (2X0Yo y ) [45]

(xg—ys—x2+y?+yC? ’
+ (2Xgyo — 2Xy — XC)?

which gives the usual CDHO lineshapes on the real axis(
Yo = 0):

B(x32 — x?)
(x3— x3)%+ Cx?

g(x) = Ag + [46]

BCx
(X3 — x??%+ Cx?"

h(x) = [47]

Itis a relatively simple task to show that the functions given
by Egs. [44] and [45] satisfy the Cauchy—Riemann equations

(see appendix), and thus the function given by Eq. [43]
analytic. Equation [43] goes 4, as|z] — «, and by substi

tuting —x into Eqgs. [46] and [47], one can see that the real part

0(x), is even on the real axis and that the imaginary fgrt),

applies to these quantities, any lineshapes used to fit them mi
also meet these criteria. It was shown that the usual Gaussi
and Lorentzian functions do not meet these criteria becau:
they are not odd functions. This is not significant for the
Gaussian lineshape but it is significant for low wavenumbe

0.8 1

06 1

0.4 4

Intensity (arbitrary units)

0.2 1

0 T T T T
500 400 300 200 100
Wavenumber / cm™

is 0

'FIG. 7. The usual Lorentzian, given by Eq. [37], and the modified Lorent-
zian, given by Eq. [39], for a peak at 250 chwith a full width at half-height

is odd on the real axis. Thus the CDHO bandshape matchesdh#o cm™. The two are superimposed on the scale shown.
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0.18 a9 ah A
ay  ax’ [A2]
0.16
It can also be shown that for a functiério be analytic in a
0.14 1 domainD, its component functionsg and h) must behar-
monic in D, where a functionw(x, y), is defined to be
0.12 1 harmonic if its satisfies Laplace’s equation
[
E 011 82W+82W 0 A3
g oy O [A3]
S 0.08
=x

If a function f(z) fails to be analytic at a poirt,, but is
0.06 - analytic at some point in every neighborhoodzgf thenz, is
called asingular pointof f.

0.04
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FIG.8. The difference between the usual Lorentzian given by Eq. [37] and
the modified Lorentzian given by Eq. [39], expressed as a percentage of the

s e e s e, o s S 6T TGy ars s Cogy: ot s, Coma, 4517
4 : 2. R. de L. Kronig,J. Opt. Soc. Am12, 547 (1926).

3. C. J. Gorter and R. de L. Kronig?hysica3, 1009 (1936).
4. K. Yamamoto and H. Ishida/ib. Spectrosc8, 1 (1994). [See references
peaks for the Lorentzian lineshape. However, the Lorentzian cited therein.]
lineshape can be made odd by considering the difference ofJ- E- Bertie and H. H. EyseAppl. Spectrosc39, 392 (1985).
two peaks centered at and —X,. It was also shown in this 6. J.E. Bertie and S. L. Zhangan. J. Chem?70, 520 (1992).
p ; 0 o 7. J. E. Bertie and Z. Lan]. Chem. Physl03,10152 (1995);). Chem. Phys.
paper that the CDHO lineshape meets all the criteria of the KK 195 8502 (1996).

transformation and the optical quantities. 8. K. K. Lehmann,in “Cavity-Ringdown Spectroscopy—An Ultratrace-Ab-
sorption Measurement Technique” (K. Busch and M. Busch, Eds.), Amel
ican Chemical Society, Washington, 1999.

REFERENCES

APPENDIX 9. C. W. Peterson and B. W. Knighi, Opt. Soc. Am63, 1238 (1973).
10. A. Yariv, “Quantum Electronics,” 3rd ed., Wiley, New York, 1989.
Analytic Functions 11. P. M. Morse and H. Feshbach, “Methods of Theoretical Physics,

McGraw-Hill, New York, 1953.
This appendix presents a brief overview of analytic fund2. H. Frohlich, “Theory of Dielectrics: Dielectric Constant and Dielectric
tions. For a more complete discussion, the reader is referred tol-0ss:” 2nd ed., Oxford Univ. Press, London, 1949.

. 13.J. S. Toll,Phys. Rev104,1760 (1956).
a text on complex analysis such as Ref&2)(and @3). A 14. G. H. Goedecke). Opt. Soc. AmG5, 146 (1966).

func'gion f(_z), Where_z = X + iy, is definedto be analytic f’it 15. B. Gross,Phys. Rev59, 748 (1941).

a pointz, if df/dz exists not only ar, but also at every point 16. J. E. Bertie, S. L. Zhang, and C. D. Keefle Mol. Struct.324,157 (1994).
Z in some neighborhood af,. It should be noted th;{( z) can 17. C. D. Keefe, PhD. dissertation, University of Alberta, 1994.
always be considered to be the sum of two real valued funi@ J- E- Bertie and S. L. Zhang, Mol. Struct.333, 413 (1997).

. . . 19. J. E. Bertie and C. D. Keefé&resenius J. Anal. Chen362,91 (1998).
tions g and h according to Eq. [1]. The fact that the part'atzlo. J.E. Bertie, Y. Apelbat, and C. D. Keefe,Mol. Struct550—551135 (2000).

derivatives ofg and h with respect tox andy (i.e., 99/0X, 21 c.D. Keefe, L. A. Donovan, and S. D. Fledt,Phys. Chem. A03,6420
aglay, ahlax, ahlay) exist is not sufficient to guarantee that  (1999).

df/dz exists and thus can not guarantee thiagtanalytic. Forf =~ 22. J. B. Conway, “Functions of One Complex Variable,” 2nd ed., Springer-

to be analytic the functiong andh must satisfy the Cauchy— _ Verlag, New York, 1978. _ o
] - 23. R. V. Churchill and J. W. Brown, “Complex Variables and Applications,”
Riemann equatlons

McGraw-Hill, New York, 1984.
24. M. Born and E. Wolf, “Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light,” 6th ed., Pergamor
[Al] Press, Qxford, 1980.
25. A. A. Clifford and B. Crawford, Jr.J. Phys. Chem70, 1536 (1966).

dg  ah
ax ay

Copyright © 2001 by Academic Press



	INTRODUCTION
	REVIEW OF THE TRADITIONAL PROOF
	FIG. 1

	APPLICATION TO THE REFRACTIVE INDEX, DIELECTRIC CONSTANT, AND MOLAR POLARIZABILITY
	FITTING THE IMAGINARY COMPONENT
	FIG. 2
	FIG. 3
	FIG.4
	FIG. 5
	FIG.6

	SUMMARY
	FIG. 7
	FIG.8

	APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

