# Cape Breton University 

## Matrix Algebra

April 2006
Time : 3 hours

Answer FIVE of the SEVEN questions, giving all working and reasoning.

Q1. (a) Find the eigenvalue of multiplicity 2 in this matrix $A:=\left(\begin{array}{rrr}103 & -48 & -48 \\ 120 & -53 & -60 \\ 96 & -48 & -41\end{array}\right) \cdot[5]$
(b) Find two eigenvectors belonging to this eigenvalue and check they are independent and satisfy the eigenvector-eigenvalue equation.
(c) If, in general, two eigenvectors $v_{1}$ and $v_{2}$ share an eigenvalue determine which real numbers $c_{i}$ make $v:=c_{1} v_{1}+c_{2} v_{2}$ an eigenvector of this eigenvalue too.

Q2. (a) Find the inverse of this matrix using carefully chosen row operations:

$$
E:=\left(\begin{array}{rrrr}
2 & -2 & 1 & 2 \\
1 & 0 & 0 & 1 \\
-2 & -2 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right)
$$

(b) Multiply $E$ and your answer to see how close you got to the inverse.
(c) In general, if $A^{-1}\left(X C^{T}\right)^{T}=B$ what is $X$ in terms of $A, B$ and $C$ ?

Q3. The values in two sequences are related by the following two equations:

$$
p_{i+1}:=\frac{1}{2} p_{i}+5 q_{i}, \quad q_{i+1}:=\frac{5}{3} p_{i}-\frac{1}{3} q_{i}
$$

(a) Diagonalise the underlying matrix and hence get an expression for $p_{n}$ and $q_{n}$ in terms of $p_{0}$ and $q_{0}$.
(b) Show that if $p_{0}:=26$ and $q_{0}:=13$ then $p_{n}$ and $q_{n}$ always stay in the ratio 2:1 and deduce another simple ratio with the same property.

Q4. (a) What is the best fit line to this data?

| $x_{i}$ | 3 | 2 | 1 | 0 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y_{i}$ | -2 | 1 | 3 | 3 | -7 |

(b) What is the best fit quadratic to the data?
(c) At which points in the $x y$ plane do your line and quadratic meet?

Q5. (a) Find the line in $\mathbb{R}^{4}$ which is a solution to this system of equations:

$$
\begin{aligned}
9 w+6 x & =15 y+z-4 \\
2 w+4 x & =10 y-2 z \\
4 w+6 x+1 & =12 y-z \\
5 w+3 & =3 y+2 z
\end{aligned}
$$

(b) Check whether the point with $w=4, x=2, y=3$ and $z=7$ is on your line. [1]
(c) What space is perpendicular to your line and passes through the point $\left(\begin{array}{r}4 \\ 3 \\ -5 \\ -2\end{array}\right)$ ? [2]

Q6. (a) Evaluate the determinant of this matrix:

$$
F:=\left(\begin{array}{rrr}
-2 & 3 & 5 \\
y & -6 & -8 \\
-9 & x & 4
\end{array}\right)
$$

(b) What is the value of $y$ for any given $x$ which makes the determinant zero?
(c) Taking the columns of $F$ now as vectors, and letting $x=-2$, find the value of $y$ which makes the first two columns orthogonal.
(d) Use the two orthogonal vectors with Gram Schmidt to find an orthogonal basis. [4]

Q7. (a) Find a basis for the space spanned by these vectors using vanishing equations.

$$
\left(\begin{array}{r}
7 \\
3 \\
-4
\end{array}\right), \quad\left(\begin{array}{r}
-4 \\
-2 \\
3
\end{array}\right), \quad\left(\begin{array}{r}
8 \\
2 \\
-1
\end{array}\right), \quad\left(\begin{array}{l}
7 \\
1 \\
1
\end{array}\right)
$$

(b) Give a set of three different vectors from $\mathbb{R}^{3}$ which have a basis containing just one vector and explain why all such sets will be similar.
(c) Check all three vector subspace axioms for this set: $S:=\left\{\binom{x}{y}: \frac{x}{y} \neq 1\right\}$.

