## Math115 Test2a: Inverses and Eigenvectors

1. (a) Find the eigenvalues of this matrix by using determinant row and column operations.

$$
B:=\left(\begin{array}{rrr}
-40 & 147 & 21 \\
-30 & 107 & 15 \\
120 & -420 & -58
\end{array}\right)
$$

(b) Find the eigenvectors of $B$ and verify that they satisfy $B v=\lambda v$.
2. (a) Use row operations to find the inverse of this matrix and check your answer.

$$
C:=\left(\begin{array}{rrrr}
2 & 0 & 1 & 2 \\
-1 & -1 & 0 & -2 \\
1 & -2 & 1 & -2 \\
-1 & 1 & -2 & -1
\end{array}\right)
$$

(b) Verify the values of any 3 values (from different rows and columns) from the inverse, comparing them with the expected values from the cofactor method.

## Math115 Test2b: Inverses and Eigenvectors

1. (a) Find the eigenvalues of this matrix by using determinant row and column operations.

$$
B:=\left(\begin{array}{rrr}
178 & -105 & 35 \\
125 & -72 & 25 \\
-525 & 315 & -102
\end{array}\right)
$$

(b) Find the eigenvectors of $B$ and verify that they satisfy $B v=\lambda v$.
2. (a) Use row operations to find the inverse of this matrix and check your answer.

$$
C:=\left(\begin{array}{rrrr}
0 & 2 & 1 & 2 \\
1 & -1 & -2 & -1 \\
-2 & 1 & 1 & -2 \\
-1 & -1 & 0 & -2
\end{array}\right)
$$

(b) Verify the values of any 3 values (from different rows and columns) from the inverse, comparing them with the expected values from the cofactor method.

## Math115 Test2c: Inverses and Eigenvectors

1. (a) Find the eigenvalues of this matrix by using determinant row and column operations.

$$
B:=\left(\begin{array}{rrr}
143 & -84 & 28 \\
100 & -57 & 20 \\
-420 & 252 & -81
\end{array}\right)
$$

(b) Find the eigenvectors of $B$ and verify that they satisfy $B v=\lambda v$.
2. (a) Use row operations to find the inverse of this matrix and check your answer.

$$
C:=\left(\begin{array}{rrrr}
-2 & -2 & 1 & 1 \\
-2 & -1 & 0 & -1 \\
2 & 0 & 1 & 2 \\
-1 & 1 & -2 & -1
\end{array}\right)
$$

(b) Verify the values of any 3 values (from different rows and columns) from the inverse, comparing them with the expected values from the cofactor method.

## Math115 Test2d: Inverses and Eigenvectors

1. (a) Find the eigenvalues of this matrix by using determinant row and column operations.

$$
B:=\left(\begin{array}{rrr}
-40 & 147 & 21 \\
-30 & 107 & 15 \\
120 & -420 & -58
\end{array}\right)
$$

(b) Find the eigenvectors of $B$ and verify that they satisfy $B v=\lambda v$.
2. (a) Use row operations to find the inverse of this matrix and check your answer.

$$
C:=\left(\begin{array}{rrrr}
-2 & -1 & 0 & -1 \\
-2 & -2 & 1 & 1 \\
2 & 0 & 1 & 2 \\
-1 & 1 & -2 & -1
\end{array}\right)
$$

(b) Verify the values of any 3 values (from different rows and columns) from the inverse, comparing them with the expected values from the cofactor method.

