Math115 Test5: Independence and Subspaces

1. (a) These four vectors are not independent, find the vanishing relation between them and hence determine a basis for the vector space.

$$
v_{1}:=\left(\begin{array}{l}
3 \\
5 \\
2 \\
1
\end{array}\right), \quad v_{2}:=\left(\begin{array}{r}
-5 \\
-1 \\
-2 \\
3
\end{array}\right), \quad v_{3}:=\left(\begin{array}{r}
3 \\
-2 \\
-8 \\
-4
\end{array}\right), \quad v_{4}:=\left(\begin{array}{r}
4 \\
2 \\
-4 \\
-2
\end{array}\right)
$$

(b) Find a vector orthogonal to v_{1}, v_{2} and v_{3}.

2. (a) Find the best fit quadratic for these data points: | x_{i} | -3 | -2 | 1 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| y_{i} | 3 | -1 | 0 | 3 |

(b) Prove or disprove the subspace axioms for this set: $\left\{\binom{x}{y} ; y>|x|\right\}$

