Cape Breton University

Matrix Algebra

February 2008
Time : 1.5 hours

Answer THREE of the FOUR questions, giving all working and reasoning.

Q1. (a) Find all solutions for the homogeneous equation of this matrix:

$$
A:=\left(\begin{array}{rrrrr}
3 & 0 & -3 & -3 & 6 \\
1 & -2 & -2 & -1 & 5 \\
-3 & -2 & 2 & 3 & -3
\end{array}\right)
$$

(b) What is the rank of A ? Use row operations to find the rank of A^{T}. Explain briefly why you would expect these two ranks to be equal.

Q2. (a) Diagonalise $J:=\left(\begin{array}{cc}5 & -3 \\ 7 & -5\end{array}\right)$ and hence find a general expression for J^{n}.
(b) Check that the inverse of J is J^{-1} and check that it is also a multiple of J.
(c) Use algebra or guesswork to find another matrix K which is not a multiple of J which also has this exact relation to its inverse.

Q3. (a) Use the laws of matrix algebra to find X if $B X C=C+B$ assuming all other matrices are multipliable and invertible
(b) If X is an $m \times n$ matrix, what size matrices do B and C have to be if we don't insist they have inverses?
(c) Create random 2×1 matrices B and C and find all solutions for X in this case. Does your choice of matrices affect whether or not there are solutions?

Q4. Find all eigenvalues and any two eigenvectors of this matrix.

$$
\left(\begin{array}{rrr}
-43 & 60 & -15 \\
-27 & 38 & -9 \\
18 & -24 & 8
\end{array}\right)
$$

