Cape Breton University

Matrix Algebra

February 2009

Please answer any THREE of these questions, please make sure to give all reasoning and working for all questions answered. Start a fresh sheet of paper for each question attempted.

Q1. (a) What are the eigenvalues and eigenvectors of $F:=\left(\begin{array}{cc}5 & -4 \\ 6 & -6\end{array}\right)$?
(b) Evaluate F^{2} and multiply it by the eigenvectors from part (a) to deduce what the eigenvalues of F^{2} are. Explain what you think the eigenvalues of the square of a matrix will be in general, and use algebra to explain why.
(c) Explain why any matrix with determinant 0 will always have eigenvalue 0 too.

Q2. (a) Calculate the adjoint of this matrix:

$$
E:=\left(\begin{array}{rrr}
-3 & 4 & 1 \\
4 & 2 & y \\
-2 & x & -1
\end{array}\right)
$$

(b) Which value of y guarantees that E has an inverse?
(c) Create an always singular matrix including an x and a y and no zeroes. Explain why this cannot be done if the x and y are in different rows and columns.

Q3. (a) Solve this equation for matrix X, using one rule of algebra at a time. Explain what assumptions you make at each step to ensure the equation is solvable: [5]

$$
(X A-3 C)^{T}=A^{T} B
$$

(b) If B is a 2×1 matrix, what sizes would A, C and X have to be?
(c) If all matrices are 2×2 but A has rank 1 , choose such A, B and C and find an infinite number of solutions for X.

Q4. (a) Given that the rank of G is 3, find the solution to its homogeneous equation. [8]

$$
G:=\left(\begin{array}{rrrr}
11 & 13 & 13 & 23 \\
10 & 10 & 9 & 6 \\
1 & 6 & 8 & 13 \\
3 & 3 & 3 & 15 \\
7 & 6 & 5 & 7
\end{array}\right)
$$

(b) Find the rank of G^{T} using new row operations.

END OF QUESTION PAPER

