Math1204 Algebra Handout 2012

A matrix is of size $m \times n$ if it has m rows and n columns. C is square if it is $n \times n$.

Two matrices can only be added or subtracted only if they are of the same size. Two matrices A and B can only be multiplied to form AB if A is of size $m \times n$ and B is $n \times p$. In this case AB will be of size $m \times p$. Recall that, in general, $AB \neq BA$. The scalar multiple of a matrix $\alpha \times B$ is formed by multiplying all entries of B by the real number α . I is the identity matrix with zeros everywhere apart from ones on the top left to bottom right diagonal. Only square matrices can have determinants or inverses, although if $\det(C) = 0$ then C will not have an inverse, it will be a "singular" matrix.

The following relations are true for any matrices (assuming they can be multiplied/added/inverted):

(X+Y) = (Y+X)	Additive Commutativity
(X+Y) + Z = X + (Y+Z)	Additive Associativity
X(YZ) = (XY)Z	Multiplicative Associativity
X(Y+Z) = (XY) + (XZ)	Right Distributivity
(X+Y)Z = (XZ) + (YZ)	Left Distributivity
$X(X^{-1}) = I$	Right Inverse
$(X^{-1})X = I$	Left Inverse
$(X^{-1})^{-1} = X$	Double Inverse
$(XY)^{-1} = (Y^{-1})(X^{-1})$	Inverse Product
(XI) = X	Right Identity
(IX) = X	Left Identity
$X^2 = XX$	Matrix Square
$(XY)^2 = XYXY$	Square Product
$(X+Y)^2 = X^2 + XY + YX + Y^2$	Square Sum
$(X+Y)^T = (X^T) + (Y^T)$	Transpose Sum
$(XY)^T = (Y^T)(X^T)$	Transpose Product
$(X^T)^T = X$	Double Transpose
$(X^T)^{-1} = (X^{-1})^T$	Transpose Inverse
$(\alpha \times X)Y = \alpha \times (XY)$	Left Scalar Associativity
$X(\alpha \times Y) = \alpha \times (XY)$	Right Scalar Associativity
$(\alpha \times X)^T = \alpha \times (X^T)$	Scalar Transpose
$(\alpha \times X)^{-1} = \alpha^{-1} \times (X^{-1})$	Scalar Inverse
$\det(XY) = \det(X)\det(Y)$	Determinant Product
$\det(X^T) = \det(X)$	Determinant Transpose
$\det(X^{-1}) = (\det(X))^{-1}$	Determinant Inverse
$\det(\alpha X) = (\alpha^n)\det(X)$	Scalar Determinant $(X \text{ is } n \times n)$