Cape Breton University

MATH 1204

Matrix Algebra

April 2012
Time : 3 hours

Please answer any FIVE of these questions, please make sure to give all reasoning and working for all questions answered. Start each question on a new piece of paper.

Q1. We are given these a line and a plane as follows:

$$
L_{1}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right):=\left(\begin{array}{r}
-4 \\
3 \\
4
\end{array}\right) \times t+\left(\begin{array}{r}
7 \\
2 \\
-1
\end{array}\right), \quad P:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \circ\left(\begin{array}{r}
9 \\
-2 \\
3
\end{array}\right)=-4
$$

(a) At which point do L_{1} and P intersect? Check this point lies in the plane.
(b) What is the shortest distance between L_{1} and $L_{2}:=\left(\begin{array}{r}-3 \\ 5 \\ 5\end{array}\right) \times s+\left(\begin{array}{r}-1 \\ 62 \\ -11\end{array}\right)$? [9]

Q2. (a) Find two non-parallel eigenvectors of matrix M that have -1 as an eigenvalue: [5]

$$
M:=\left(\begin{array}{rrrr}
2 & -3 & -3 & 3 \\
6 & -8 & -5 & 7 \\
0 & -1 & 0 & 1 \\
6 & -8 & -4 & 7
\end{array}\right)
$$

(b) Use Gram-Schmidt to get an orthogonal pair of eigenvectors for eigenvalue -1. [2]
(c) Use carefully chosen determinant row and column operations to create zeros in $\operatorname{det}(M-\lambda I)$ and hence or otherwise find the other two eigenvalues of M. [5]

Q3. (a) For which x is $J:=\left(\begin{array}{rrr}-2 & -5 & x \\ 3 & -1 & -6 \\ 4 & -7 & -3\end{array}\right)$ a singular matrix?
(b) Assuming x is not this value, use the adjoint method on the matrix with x in to find the general inverse of J and check your answer by multiplying it with J. [5]
(c) Do a cofactor expansion to get $\operatorname{det}\left(J^{-1}\right)$ and simplify to get the expected value. [4]

Q4. (a) Solve this matrix equation in terms of X, assuming inverses exist and stating which properties of matrix algebra you used:

$$
2\left(B^{T}+4 A^{-1} X\right)^{-1}=B A
$$

(b) Check if your solution is all integers for $A:=\left(\begin{array}{rr}3 & 4 \\ 2 & -3\end{array}\right)$ and $B:=\left(\begin{array}{rr}3 & -7 \\ -5 & 11\end{array}\right)$ [4]
(c) If $E F$ is a square matrix, what can you say about the sizes of E and F ? How can $E F$ have an inverse if E and F are not square matrices? Explain why, in this case, only one of $E F$ or $F E$ can have an inverse, giving an example.

Q5. (a) Solve this simultaneous pair of recurrences using diagonalisation;

$$
c_{n+1}:=\frac{1}{143}\left(67 c_{n}+33 d_{n}\right), \quad d_{n+1}:=\frac{1}{143}\left(44 c_{n}-54 d_{n}\right), \quad c_{0}=15, \quad d_{0}=18
$$

(b) What will the ratio $\frac{c_{k}}{d_{k}}$ tend to as k tends to ∞ ? How rapidly would you expect $\frac{c_{k}}{d_{k}}$ to move towards this value? Why?

Q6. Let H be the hyperplane which has the following basis:

$$
v_{1}:=\left(\begin{array}{l}
2 \\
2 \\
5 \\
2
\end{array}\right), \quad v_{2}:=\left(\begin{array}{l}
6 \\
3 \\
6 \\
7
\end{array}\right), \quad v_{3}:=\left(\begin{array}{l}
4 \\
2 \\
2 \\
2
\end{array}\right)
$$

(a) Use row operations to show that $\underline{u}:=\left(\begin{array}{r}-10 \\ -5 \\ 4 \\ 2\end{array}\right)$ is not in H.
(b) Re-use the same row operations to show that $\underline{w}:=\left(\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right)$ is in H.
(c) Express H in 4-dimensional dot product form by finding the vector normal to each vector in the basis and verify that \underline{u} and \underline{w} have the appropriate dot products with the normal, explaining why they should have those values.

Q7. (a) What is the equation of the best fit straight line for this data? | x | -2 | 3 | 5 |
| :--- | :--- | :--- | :--- |
| y | -6 | 4 | 1 | [4]

(b) What is the general equation of all cubic polynomials which fit exactly through these three points?
(c) Why do none of these cubics have all their coefficients as integers? Explain why, nonetheless, y will be an integer for every integer x for every cubic with an integer coefficient of x^{3}.

