Cape Breton University

Math 1204

Matrix Algebra

February 2012

Please answer any THREE of these questions, please make sure to give all reasoning and working for all questions answered. Start a fresh sheet of paper for each question attempted.

Q1. (a) Use row operations to find the inverse of $C:=\left(\begin{array}{rrr}-3 & 3 & 4 \\ -4 & 5 & 2 \\ 4 & 3 & 5\end{array}\right)$, and do not introduce fractions until you have pivoted twice.
(b) Calculate the determinant of $\left(\begin{array}{rrr}-3 & x & 4 \\ -4 & 5 & 2 \\ y & 3 & 5\end{array}\right)$. Check whether the values for x and y from C give a number which appears as the denominator in C^{-1}.

Q2. (a) Diagonalise this matrix and hence give the formula for M^{k} for any k.

$$
M:=\frac{1}{3}\left(\begin{array}{rr}
5 & 14 \\
4 & 4
\end{array}\right)
$$

(b) Check your answer for $k=0, k=-1, k=1$ and $k=2$.

Q3. (a) Solve this equation in matrix algebra for X explaining what you are doing at each simplification step:

$$
3(B A+A X)=A+C^{T}
$$

(b) What sizes must the matrices be if A is $m \times n$? Which matrices need to have inverses for X to have a unique solution? How does wanting a unqiue solution affect the sizes of each matrix?
(c) Using the following matrices, substitute them into your solution for (a) and hence find X (which should also be all integers).

$$
A:=\left(\begin{array}{rr}
11 & 9 \\
4 & 3
\end{array}\right), \quad B:=\left(\begin{array}{rr}
3 & -12 \\
-4 & 16
\end{array}\right), \quad C:=\left(\begin{array}{rr}
1 & 26 \\
15 & 54
\end{array}\right),
$$

Q4. We will be dealing with this matrix in this question:

$$
H:=\left(\begin{array}{rrr}
-17 & 22 & -28 \\
88 & -104 & 142 \\
76 & -91 & 123
\end{array}\right)
$$

(a) Check that $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ is an eigenvector of H and identify its eigenvalue.
(b) Evaluate the determinant of $(H-\lambda I)$ by means of a co-factor expansion and factorise it (the polynomial should have very small coefficients).
(c) Find one other eigenvector of H (if you couldn't get another eigenvalue from (b) ask me for one).

END OF QUESTION PAPER

