Math1204 Test 3

February $15^{\text {th }}, 2012$

Answer all questions and give complete reasons and checks for your answers. Please do not erase anything, just put a line through your work and continue; you cannot lose marks for anything you write. The parts of the questions are weighted as shown and can be answered in any order.

1. (a) By using a well chosen column operation on the appropriate matrix, find all three eigenvalues of matrix M.

$$
M:=\left(\begin{array}{rrr}
-7 & 10 & -3 \\
24 & -26 & 12 \\
78 & -90 & 38
\end{array}\right)
$$

(b) Verify by multiplying that $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is an eigenvector of M and find its eigenvalue, then find one of the two other eigenvectors of M.
2. (a) Use the adjoint method to find the inverse of this matrix:

$$
Q:=\left(\begin{array}{rrr}
2 & 1 & -1 \\
0 & -6 & 2 \\
5 & 1 & 4
\end{array}\right)
$$

(b) Create a 2×2 matrix P containing only positive numbers which has determinant equal to -1 . What is P^{-1} ? How many negative numbers are in P^{2} and P^{-2} ? How many negative numbers will be in P^{k} for any given integer k ?

