Math1204 Test 5

March $22^{\text {nd }}-29^{\text {th }}, 2012$

Answer all questions and give complete reasons and checks for your answers. Please do not erase anything, just put a line through your work and continue; you cannot lose marks for anything you write. The parts of the questions are weighted as shown and can be answered in any order.

The numbers represented by a, b, c and d should be replaced by the last four digits of your registration number in that order and any zero should be replaced by -1 . For instance, if my registration number was 20015270 then i would take $a=5, b=2, c=7$ and $d=-1$.

1. Find two different equations for the two dimensional line $y=d x+a$ in vector form. Use either vector form to find the point of intersection of that line with this one: [4]

$$
L:\binom{x}{y}=\binom{-3}{5} \times t+\binom{c}{1}
$$

2. (a) Find the plane P which passes through the point $\left(\begin{array}{r}c \\ a \\ -5\end{array}\right)$ and has normal $\left(\begin{array}{r}-4 \\ b \\ 3\end{array}\right)$.
(b) In three dimensions, find the shortest distance from P to the point $N:=\left(\begin{array}{r}2 \\ -3 \\ -11\end{array}\right)$.
(c) Find a registration number nobody else in the class chooses which, if used in (a) to make P, would give you a plane which passes through N (or doesn't pass through N if your registration number gave a plane which did).
3. Where does P intersect with this plane?

$$
Q:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \circ\left(\begin{array}{r}
6 \\
-4 \\
7
\end{array}\right)=-5
$$

4. Find two new points on P with integer values, find an equation of the unique line through them and verify that this line lies completely inside P.
