Math105 Handout 3: Induction and Sequences

- Induction: Given a statement $p(n)$ about an integer n we wish to show it is true for all integer values of n at least a and we proceed as follows:
- Initial Case: Show that $p(a)$ is true (optionally also test $p(a+1)$ and $p(a+2)$ to see how the induction will proceed).
- Inductive Case: Assume $p(k)$ is true for some value of $k \geq a$. State one side of $p(k+1)$ in terms of the corresponding side of $p(k)$ and use the assumptions to deduce that the other side of $p(k+1)$ is related in the same way as $p(n)$ was.

For example: $p(n):=" \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} "$

- Initial Case: The first possible value of n is 1 , so we consider $p(1):=$ " $1^{2}=1=\frac{1 \times(1+1) \times(2 \times 1+1)}{6}=$ 1 " as required. Similarly, $p(2):=" 1^{2}+2^{2}=5=\frac{2 \times(2+1) \times(2 \times 2+1)}{6}=5$ " and $p(3):=" 1^{2}+2^{2}+3^{2}=$ $14=\frac{3 \times(3+1) \times(2 \times 3+1)}{6}=14^{\prime \prime}$.
- Inductive Case: Assume $p(n):=" \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ ". Now

$$
\sum_{i=1}^{n+1} i^{2}=\sum_{i=1}^{n} i^{2}+(n+1)^{2}=\operatorname{lhs}(p(n))+(n+1)^{2}
$$

But using the assumption (the inductive hypothesis), we get that

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =(n+1) \frac{n(2 n+1)+6(n+1)}{6} \\
& =(n+1) \frac{\left(2 n^{2}+7 n+6\right)}{6} \\
& =(n+1) \frac{(2 n+3)(n+2)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}
\end{aligned}
$$

But this is exactly the statement $p(n+1)$ that we wished to establish!

- Sigma Notation:

$$
\begin{array}{cl}
1+\ldots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} & 1^{2}+\ldots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \\
b+\ldots+b=\sum_{i=1}^{n} b=n b & 1+x+\ldots+x^{n}=\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
\end{array}
$$

- Sequences:

- The sequence $a_{n+1}=k a_{n}+l a_{n-1}$ is solved by following the following steps:
* Solve the quadratic equation $x^{2}-k x-l=0$ to get roots s_{1} and s_{2}.
* If $s_{1} \neq s_{2}$ then try the solution $a_{n}=u\left(s_{1}\right)^{n}+v\left(s_{2}\right)^{n}$ otherwise try $a_{n}=(u+n v)\left(s_{1}\right)^{n}$
* Use your solution together with the given values for a_{1} and a_{2} to find the values of u and v.
* Check that the recurrence relation is satisfied.
- The sequence $a_{n+1}=k a_{n}+l$ has solution $a_{n}=u\left(k^{n}\right)+v$ which can be found similarly.
- For a general recurrence relation:
* Substitute the recurrence expression for a_{n} into the given expression for a_{n+1} and then repeat with the expression for a_{n-1} and a_{n-2} if necessary.
* Guess a general formula for a_{n} in terms of a_{1} and express any ". .." as an algebraic expression using a formula from below.
* Verify this closed solution against the recurrence relation and the expression for a_{1}. If an error exists then try a new guess.

- Pigeonhole:

Given a set of n objects and m groups to place them in, if $m<n$ then at least one group has two objects in it. In general, we can say that one group must have at least

$$
\left\lfloor\frac{n-1}{m}\right\rfloor+1
$$

objects in it where the brackets round down the nearest integer.

