Math 205 Handout 3: Induction and Pigeonholes

- Induction: Given a statement $p(n)$ about an integer n we wish to show it is true for all integer values of n at least a and we proceed as follows:
- Initial Case: Show that $p(a)$ is true (optionally also test $p(a+1)$ and $p(a+2)$ to see how the induction will proceed).
- Inductive Case: Assume $p(k)$ is true for some value of $k \geq a$. State one side of $p(k+1)$ in terms of the corresponding side of $p(k)$ and use the assumptions to deduce that the other side of $p(k+1)$ is related in the same way as $p(n)$ was.

For example: $p(n): \equiv " \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} "$

- Initial Case: The first possible value of n is 1 , so we consider $p(1):=$ " $1^{2}=1=\frac{1 \times(1+1) \times(2 \times 1+1)}{6}=$ 1 " as required. Similarly, $p(2):=" 1^{2}+2^{2}=5=\frac{2 \times(2+1) \times(2 \times 2+1)}{6}=5$ " and $p(3):=" 1^{2}+2^{2}+3^{2}=$ $14=\frac{3 \times(3+1) \times(2 \times 3+1)}{6}=14^{\prime \prime}$.
- Inductive Case: Assume $p(k):=" \sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}$ ". Now the left hand side of $p(k+1)$ is

$$
\sum_{i=1}^{k+1} i^{2}=\left(\sum_{i=1}^{k} i^{2}\right)+(k+1)^{2}=\operatorname{LHS}(p(k))+(k+1)^{2} .
$$

But using the assumption (the inductive hypothesis), we get that

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1) \frac{k(2 k+1)+6(k+1)}{6} \\
& =(k+1) \frac{\left(2 k^{2}+7 k+6\right)}{6} \\
& =(k+1) \frac{(2 k+3)(k+2)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
\end{aligned}
$$

But this is exactly the statement $p(k+1)$ that we wished to establish!

- Basic formulae in Sigma Notation:

$1+\ldots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad b+\ldots+b=\sum_{i=1}^{n} b=n b \quad 1+x+\ldots+x^{n}=\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}$

- Pigeonhole Principle:

Given a set of n objects and m groups to place them in, if $m<n$ then at least one group has two objects in it. In general, we can say that one group must have at least

$$
\left\lfloor\frac{n-1}{m}\right\rfloor+1
$$

objects in it where the brackets round down the nearest integer.

