Math 205 Handout 3: Induction and Pigeonholes

e Induction: Given a statement p(n) about an integer n we wish to show it is true for all integer values
of n at least a and we proceed as follows:

— Initial Case: Show that p(a) is true
(optionally also test p(a + 1) and p(a 4 2) to see how the induction will proceed).

— Inductive Case: Assume p(k) is true for some value of k > a. State one side of p(k+1) in terms of
the corresponding side of p(k) and use the assumptions to deduce that the other side of p(k + 1)
is related in the same way as p(n) was.
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— Initial Case: The first possible value of n is 1, so we consider p(1) := “12 =1 = w =

17 as required. Similarly, p(2) := “12422 =5 = %W'H) =57 and p(3) := “12+22+3% =
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— Inductive Case: Assume p(k) = “Zk 1 Z'2 = ww. Now the left hand side of p(k’ + 1) is
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But using the assumption (the inductive hypothesis), we get that
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But this is exactly the statement p(k + 1) that we wished to establish!

e Basic formulae in Sigma Notation:
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e Pigeonhole Principle:

Given a set of n objects and m groups to place them in, if m < n then at least one group has two
objects in it. In general, we can say that one group must have at least
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objects in it where the brackets round down the nearest integer.




