Cape Breton University	Math205
Discrete Math	
November 2008	Time : 1.5 hours
Answer THREE of the FOUR questions, giving all working and reasoning	ŗ.
Q1. (a) Simplify this logic expression to one with just two letters in: $((\sim q) \to (r \land p)) \to p$	[7]
(b) Verify your result with a truth table.	[3]
(c) Give an expression involving p, q and r that simplifies to q .	[1]

- Q2. (a) Prove, using the direct method, that the difference between the squares of two odd numbers must be an integer multiple of 4. [8]
 - (b) Explain why this fact is also true for even numbers, but not if one is odd and the other is even. [3]

Q3. (a) Given this universal set of country codes, explain which are in these three sets and use this information to form a Venn diagram. [4]

\mathcal{U}	:=	$\{ NZ, CAN, GB, ZW, IT, PRC, MOR, DDR \}$
A	:=	Codes with fewer than three letters in
B	:=	Codes which do not include a vowel
C	:=	Codes with more letters from the 2nd half of the alphabet than the first

(b) Which subset(s) of your diagram are empty? Identify one of cardinality 3. [2]

[5]

(c) Prove, using Venn diagrams, that $X \cap (Y \cup \overline{Z}) \subseteq \overline{Y} \cup (X \cap Z)$

3

Q4. (a) Use algebra to simplify these inequalities and hence plot where they are true on the real line [6]

$$p(x) :\equiv "|x-1| \ge 2"$$

$$q(x) :\equiv "x^2 < 2+x"$$

$$r(x) :\equiv "|3x-1| \le 5"$$

(b) Determine whether these statements are true or false:

 $\exists x \in \mathbb{Z}; p(x) \land r(x) , \quad \forall x \in \mathbb{R}; p(x) \lor r(x) , \quad \exists x \in \mathbb{R}; q(x) \to r(x)$

END OF QUESTION PAPER

[5]