Discrete Math

November 2008
Time : 1.5 hours

Answer THREE of the FOUR questions, giving all working and reasoning.

Q1. (a) Simplify this logic expression to one with just two letters in:

$$
((\sim q) \rightarrow(r \wedge p)) \rightarrow p
$$

(b) Verify your result with a truth table.
(c) Give an expression involving p, q and r that simplifies to q.

Q2. (a) Prove, using the direct method, that the difference between the squares of two odd numbers must be an integer multiple of 4 .
(b) Explain why this fact is also true for even numbers, but not if one is odd and the other is even.

Q3. (a) Given this universal set of country codes, explain which are in these three sets and use this information to form a Venn diagram.
$\mathcal{U}:=\quad\{$ NZ, CAN, GB, ZW, IT, PRC, MOR, DDR $\}$
$A:=\quad$ Codes with fewer than three letters in
$B \quad=\quad$ Codes which do not include a vowel
$C:=$ Codes with more letters from the 2 nd half of the alphabet than the firs
(b) Which subset(s) of your diagram are empty? Identify one of cardinality 3.
(c) Prove, using Venn diagrams, that $X \cap(Y \cup \bar{Z}) \subseteq \bar{Y} \cup(X \cap Z)$

Q4. (a) Use algebra to simplify these inequalities and hence plot where they are true on the real line

$$
\begin{aligned}
p(x) & : \equiv "|x-1| \geq 2 " \\
q(x) & : \equiv " x^{2}<2+x " \\
r(x) & : \equiv "|3 x-1| \leq 5 "
\end{aligned}
$$

(b) Determine whether these statements are true or false:

$$
\exists x \in \mathbb{Z} ; p(x) \wedge r(x), \quad \forall x \in \mathbb{R} ; p(x) \vee r(x), \quad \exists x \in \mathbb{R} ; q(x) \rightarrow r(x)
$$

