Math2101 Handout 1: Sets and Logic Formulae 2011

• Basic Definitions

Set Theory	Notation	Definition
Complement	$A^c \text{ (or } \overline{A})$	not in
Intersection	$A \cap B$	in both
Union	$A \cup B$	in either or both
Disjoint Union	$A\triangle B$	in either but not both
Universal Set	\mathcal{U}	all elements
Empty Set	Ø	no elements

• Set Relationships

Two sets are equal if they have exactly the same elements in, we write X = Y.

If element is inside a set we write $z \in X$, otherwise we write $z \notin X$.

If a set X is wholly inside of another set Y we write $X \subseteq Y$.

The cardinality of a set X is written |X| and is the number of unique elements in X.

A set is designated $\{x \mid f(x)\}\$ if it is made up of the universal elements x for which f(x) is true.

• Set Algebra

The following are the various set relationships we established using Venn Diagrams:

Complementation	$(X^c)^c$	=	X
Commutativity	$(X \cup Y)$	=	$Y \cup X$
	$(X \cap Y)$		
Associativity			$X \cup (Y \cup Z)$
•	$(X \cap Y) \cap Z$	=	$X \cap (Y \cap Z)$
De Morgan	$(X \cup Y)^c$	=	$(X^c \cap Y^c)$
			$(X^c \cup Y^c)$
Distributive	$(X \cup Y) \cap Z$	=	$(X \cap Z) \cup (Y \cap Z)$
	$(X \cap Y) \cup Z$	=	$(X \cup Z) \cap (Y \cup Z)$
Idempotent	$(X \cup X)$		
	$(X \cap X)$	=	X
Absorbtion	$(X \cup Y) \cap X$		
	$(X \cap Y) \cup X$	=	X
Identity	$(X \cup \varnothing)$		
	$(X \cap \mathcal{U})$		
Domination	$(X \cap \varnothing)$		
	$(X \cup \mathcal{U})$		
Inverse	$(X \cup X^c)$		
	$(X \cap X^c)$	=	Ø

• Inclusion Exclusion

$$|X\cup Y|=|X|+|Y|-|X\cap Y|$$

$$|X\cup Y\cup Z|=|X|+|Y|+|Z|-|X\cap Y|-|X\cap Z|-|Y\cap Z|+|X\cap Y\cap Z|$$

• Basic Definitions

Set Theory	Notation	Definition	Logic	Notation	
Complement	A^c	not in	Not	$\sim p$	
Intersection	$A \cap B$	in both	And	$p \wedge q$	
Union	$A \cup B$	in either or both	Or	$p \lor q$	
Disjoint Union	$A\triangle B$	in either but not both	Xor	$p \lor q$	
		If p is true then q is true	Implies	$p \rightarrow q$	
		If p and q are the same	If and only if	$p \leftrightarrow q$	
Universal Set	\mathcal{U}	Always true	Tautology	T_0	
Empty Set	Ø	Never true	Absurdity	$(\sim T_0)$	

Truth table:

	p	q	$\sim p$	$p \wedge q$	$p \lor q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$	T_0
	0	0	1	0	0	0	1	1	1
:	0	1	1	0	1	1	1	0	1
	1	0	0	0	1	1	0	0	1
	1	1	0	1	1	0	1	1	1

• Logic Relationships

Double Negation	$\sim (\sim p)$	\equiv	p			
Commutative	$(p \lor q)$		$(q \lor p)$	$(p \wedge q)$		$(q \wedge p)$
Associative	$(p \lor q) \lor r$	\equiv	$p \lor (q \lor r)$	$(p \wedge q) \wedge r$	\equiv	$p \wedge (q \wedge r)$
De Morgan	$\sim (p \lor q)$		$(\sim p) \land (\sim q)$	$\sim (p \land q)$		$(\sim p) \lor (\sim q)$
Distributive	$p \lor (q \land r)$	\equiv	$(p \lor q) \land (p \lor r))$	$p \wedge (q \vee r)$	\equiv	$(p \wedge q) \vee (p \wedge r))$
Idempotent	$p \lor p$	≡	p	$p \wedge p$	≡	\overline{p}
Absorbtion	$p \lor (p \land q)$	\equiv	p	$p \wedge (p \vee q)$	\equiv	p
Identity	$p \lor (\sim T_0)$	=	p	$p \wedge T_0$	≡	p
Domination	$p \vee (T_0)$	\equiv	T_0	$p \wedge (\sim T_0)$	\equiv	$(\sim T_0)$
Inverse	$p \lor (\sim p)$	\equiv	T_0	$p \wedge (\sim p)$	\equiv	$(\sim T_0)$
Xor	$p \lor q$	=	$(\sim (p \land q)) \land (p \lor q)$			
		\equiv	$((\sim p) \land q) \lor (p \land (\sim q))$			
Implication	$p \rightarrow q$	=	$(\sim p) \lor q$			
Biconditional	$p \leftrightarrow q$	\equiv	$((\sim p) \lor q) \land (p \lor (\sim q))$			
		\equiv	$(p \to q) \land (q \to p)$			
		=	$(\sim (p \vee q)) \vee (p \wedge q)$			

\bullet Quantifiers