University College of Cape Breton

Matrix Algebra

February 2005
Time : 1.5 hours

Answer any THREE of these questions, giving all of your working and reasoning.

Q1. (a) Find the determinant of this matrix

$$
C:=\left(\begin{array}{rrr}
1 & -4 & x \\
1 & -2 & -1 \\
x-3 & 3 & 4
\end{array}\right)
$$

(b) For which values of x is C singular? Calculate the rank of C for one of these values of x. Can the rank of C be 1 for any value of x ?

Q2. (a) Verify that $\binom{5}{-3}$ is an eigenvector of both of these matrices, but that the two eigenvalues are different.

$$
A:=\left(\begin{array}{rr}
13 & 10 \\
-3 & 2
\end{array}\right), \quad B:=\left(\begin{array}{rr}
13 & 15 \\
-9 & -11
\end{array}\right)
$$

(b) Find one of the other eigenvectors and show it is not an eigenvector of the matrix it doesn't come from.

Q3. (a) Solve this system of equations by using row operations or LU factorisation. [8]

$$
\begin{array}{cc}
w-2 x-y-z=1 & w-x-y=2 \\
w+x+2 y+2 z=1 & w+z=2
\end{array}
$$

(b) Which part of your final answer is the solution to the corresponding set of homogeneous equations? Verify your answer.

Q4. (a) Using the 2×2 formula, find $\operatorname{det}(E F)$ and check the expression is identical to $\operatorname{det}(E) \times \operatorname{det}(F)$.

$$
E:=\left(\begin{array}{ll}
e_{1,1} & e_{1,2} \\
e_{2,1} & e_{2,2}
\end{array}\right), \quad F:=\left(\begin{array}{ll}
f_{1,1} & f_{1,2} \\
f_{2,1} & f_{2,2}
\end{array}\right)
$$

(b) Use (a) to deduce that $\operatorname{det}(E F)=\operatorname{det}(F E)$.
(c) Explain why we can deduce that $\operatorname{det}\left(E^{-1}\right)=\frac{1}{\operatorname{det}(E)}$ from the above work and check your answer using the general formula for the inverse of a 2×2 matrix.

