Math 115 Test 4: Recurrences and Orthogonality

March 24, 2005

Each question is weighted as shown in square brackets, use the appropriate amount of time and space to answer all parts. Give all working and reasoning for your answers to achieve full marks.

1. (a) Given these two equations, find the values of f_{1} and g_{1} if $f_{0}:=4$ and $g_{0}:=11$. [2]

$$
f_{i+1}:=3\left(20 g_{i}-17 f_{i}\right), \quad 7 g_{i+1}:=353 g_{i}-300 f_{i}
$$

(b) Form a matrix relation between consecutive terms of the f and g sequences and extend that to relate the general f and g vector to f_{0} and g_{0}.
(c) Verify that the eigenvectors of this matrix are $\binom{6}{5}$ and $\binom{7}{6}$
(d) Use the diagonalisation of the matrix to find the value of the $n^{\text {th }} f$ and g vector and check your formula against your calculated values for f_{1} and g_{1}.
(e) What ratio does $\frac{f_{n}}{g_{n}}$ approximate and how is it related to the eigenvalues?
2. (a) Given this plane, find a vector normal to it using row operations on a matrix and hence give its equation in dot product form.

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
-3 \\
7 \\
1
\end{array}\right)+k\left(\begin{array}{r}
-5 \\
27 \\
1
\end{array}\right)+l\left(\begin{array}{r}
16 \\
1 \\
-7
\end{array}\right)
$$

(b) Verify that both the origin and $e_{1}:=\left(\begin{array}{r}-5 \\ 4 \\ 2\end{array}\right)$ actually lie in this plane.
(c) Find e_{2} which is also in the plane but which is orthogonal to e_{1}.
(d) Check that the Gram Schmidt procedure with e_{1}, e_{2} and $v_{3}:=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ gives the normal from the beginning of the question.

