Math 115 Test 6: Vector Spaces and Approximations

March 29, 2005

Each question is weighted as shown in square brackets, use the appropriate amount of time and space to answer all parts. Give all working and reasoning for each question to achieve full marks.

The answers must be entirely your own work, and a statement to this effect should preface your answers. Plagiarism will be detected and the appropriate academic penalties enforced.

1. (a) Prove that $v_{1}:=\left(\begin{array}{r}2 \\ -1 \\ 3 \\ -2\end{array}\right), v_{2}:=\left(\begin{array}{r}1 \\ -3 \\ 2 \\ -1\end{array}\right)$ and $v_{3}:=\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 1\end{array}\right)$ are linearly independent, using row operations.
(b) Re-use these operations to show that $v_{4}:=\left(\begin{array}{r}4 \\ -5 \\ 6 \\ -4\end{array}\right)$ is in the space spanned by v_{1}, v_{2} and v_{3} and verify that your values so obtained for k_{1}, k_{2} and k_{3} relate the vectors
(c) Use determinants to prove that $v_{5}:=\left(\begin{array}{r}1 \\ 0 \\ -1 \\ 0\end{array}\right)$ is not in $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)$ but $v_{6}:=$

$$
\left(\begin{array}{r}
0 \\
1 \\
-1 \\
0
\end{array}\right) \text { is. }
$$

(d) What is the dimension of the space spanned by $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ and v_{6} ?
2. Calculate the Null Space and Image Space of this matrix

$$
B:=\left(\begin{array}{rrr}
-3 & -4 & -2 \\
10 & 7 & 9 \\
-4 & 1 & -5
\end{array}\right)
$$

3. (a) Calculate the straight line which passes nearest to these points:

$$
\begin{array}{c|cccc}
x_{i} & 0 & 2 & -3 & -1 \\
\hline y_{i} & -1 & 3 & 5 & 2
\end{array}
$$

(b) Find all quadratics which pass exactly through the points $(-1,4)$ and $(3,0)$.

