Cape Breton University

Matrix Algebra

March 2011
Time : $\frac{3}{2}$ hours

Please answer any THREE of these questions, please make sure to give all reasoning and working for all questions answered. Start a fresh sheet of paper for each question attempted.

Q1. (a) Find the inverse of $P:=\left(\begin{array}{rrr}9 & -3 & 1 \\ 1 & 1 & 1 \\ 9 & 3 & 1\end{array}\right)$.
(b) Use P^{-1} to find an exact fit quadratic which passes through the points $(-3,3)$, $(1,7)$ and $(3,9)$.
(c) Use P^{-1} once more (and the fact that $\left(X^{T}\right)^{-1}=\left(X^{-1}\right)^{T}$ for any invertible matrix $X)$ to find all solutions to the recurrence $c_{n+1}:=c_{n}+9 c_{n-1}-9 c_{n-2}$ such that $c_{0}=3, c_{1}=2, c_{2}=14$. Check your answer for c_{3}.

Q2. (a) Find the eigenvalues of both of these matrices and check that their eigenvectors are the same.

$$
C:=\left(\begin{array}{rr}
-63 & 143 \\
-30 & 68
\end{array}\right), \quad E:=\left(\begin{array}{rr}
200 & -429 \\
90 & -193
\end{array}\right)
$$

(b) Multiply C and E and check that $C E$ has the same eigenvectors and explain how the eigenvalues of a product of such matrices will be related to the eigenvalues of the original matrices and why.
(c) Explain why $X Y=Y X$ for any matrices which share the same eigenvectors. [3]

Q3. (a) Find all solutions to this system of equations by reducing them to an equivalent of Reduced Row Echelon Form.

$$
\begin{aligned}
-v+3 w+x+3 z & =7 \\
3 v+w-x+3 y+2 z & =1 \\
4 v+4 w+2 x+3 y+z & =-2 \\
v-w+3 x+y-z & =6 \\
v+6 w+3 x+4 y+9 z & =26
\end{aligned}
$$

(b) Use the answer to give a particular solution and a homogeneous solution both consisting only of integers.

Q4. (a) For which value of y is this matrix guaranteed to be non-singular and what is the determinant of J equal to in this case?

$$
J:=\left(\begin{array}{rrr}
-2 & x & 3 \\
0 & -1 & 3 \\
y & 4 & x
\end{array}\right)
$$

(b) Why does having two x terms in J not change the way this question works from when we only have one?
(c) What values can the rank of J take? Explain, giving an example of values of x and y and forming a RREF for each of the possible cases.
(d) Give a different 3×3 matrix F with two x s and one y entry which can have a smaller rank than J could ever have for some non-zero values of x and y. How low can the rank be if we additionally insist that each x and y is non-zero and they are all in different rows and columns?

