Cape Breton University

Math 1204

Matrix Algebra

February 2013

Please answer any THREE of these questions, please make sure to give all reasoning and working for all questions answered. Start a fresh sheet of paper for each question attempted.

Q1. (a) Evaluate $\operatorname{det}(E-\lambda I)$ using a cofactor expansion to get all three eigenvalues. [6]

$$
E:=\left(\begin{array}{rrr}
-22 & -16 & 4 \\
39 & 27 & -6 \\
0 & -4 & 4
\end{array}\right)
$$

(b) Find an eigenvector for E which contains no fractions using eigenvalue $\lambda=2$. [3]
(c) Calculate one of the other eigenvectors of E.

Q2. (a) Write these equations in matrix form and use row operations to get them to an equivalent of reduced row echelon form. What is the rank of the underlying matrix?

$$
\begin{aligned}
v+w+z & =4 \\
v+2 x+2 y+z & =7 \\
v+w-y+z & =2 \\
w-2 x+2 y & =5 \\
v+2 x+y+z & =5
\end{aligned}
$$

(b) Find two homogeneous solutions which are not multiples of each other and a combination of these two solutions which contains 3 zeros. Check all of them against the original equations. Why is it impossible to have a particular solution with more than two zeros in?

Q3. (a) Find the adjoint of F.

$$
F:=\left(\begin{array}{ccc}
4 & x & -3 \\
y & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

(b) Multiply your answer by F to check if you are correct, deduce $\operatorname{det}(F)$ and give F^{-1}.
(c) Why is there no value for x or y such that F is guaranteed non-singular? Find two different pairs of values for x and y which would give $\operatorname{det}(F)=7$.

Q4. (a) What are the eigenvalues and eigenvectors of the matrix $M:=\left(\begin{array}{rr}-3 & 4 \\ -1 & -8\end{array}\right)$? [3]
(b) Evaluate $M^{2}+28 I$ and relate it to M.
(c) Define $N:=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$. Evaluate and factor $N^{2}+\operatorname{det}(N) \times I$ in terms of N. [3]
(d) Under what circumstances will N not have two eigenvectors?

