Cape Breton University

Math1204

Matrix Algebra

February 2015
Time : 2 hours

Answer any THREE of these questions, giving all of your working and reasoning.

Q1. (a) Use row operations to find the homogeneous and particular solutions for:

$$
\begin{array}{rll}
2 w-3 x+y+z=0 & , & -7 w+8 x+4 y+3 z=-1 \\
w-4 x+8 y+7 z=-1 & , & -3 w+2 x+6 y+5 z=-1
\end{array}
$$

(b) Verify that $w=3, x=2, y=4, z=-4$ is indeed a solution by substituting these values into (a) and then find it as a combination of your solutions. Find an all-integer solution with all of w, x, y and z non-negative and less than 5 .

Q2. (a) Use the adjoint method (showing all details of all steps) on $A:=\left(\begin{array}{rrr}4 & 2 & 3 \\ t & -4 & -3 \\ -1 & 2 & 3\end{array}\right)$. Multiply A by your answer and deduce the determinant of A.
(b) Explain why A can never be singular for any value of t. Create a 3×3 matrix with two unknowns in which has a constant determinant but explain why almost every such matrix must be singular.

Q3. (a) Suppose we have the following recurrence;

$$
b_{n+1}:=b_{n}+20 \times b_{n-1}, \quad b_{0}=19, \quad b_{1}=-58
$$

Find b_{2} then use diagonalisation to get b_{k} for any positive integer k.
(b) Use logarithms to find which value of k makes b_{k} negative for the last time.

Q4. Use a determinant column operation and a row operation to factorise $\operatorname{det}(E-\lambda I)$ and hence find all eigenvectors of $E:=\left(\begin{array}{ccc}21 & -8 & 16 \\ 16 & -3 & 16 \\ -16 & 8 & -11\end{array}\right)$.

END OF QUESTION PAPER

