Cape Breton University

Math 1204

Matrix Algebra

April 2016
Time : 3 hours

Please answer any FIVE of these questions, please make sure to give all reasoning and working for all questions answered. Start a fresh sheet of paper for each question attempted.

Q1. (a) Considering the set of points $(-1,2),(3,1),(-2,0),(-4,4),(4,-1)$, find the quadratic equation that best fits this data.
(b) (i) Calculate the exact vertical fractional differences between the given values and the quadratic curve and check if they sum to zero.
(ii) Re-use parts of matrices from (a) to determine the best fit line to the data. [1]
(iii) By sketching and/or use of your calculator determine how many points are closer vertically to the best fit line than the quadratic curve.

Q2. (a) Create a matrix A with no zeroes by multiplying a suitably chosen 3×1 matrix B by its transpose. Show that the rank of A is $1, A$ will have an eigenvalue 0 of multiplicity 2 and find the other eigenvalue.
(b) Determine the eigenvectors of A, use Gram-Schmidt to create orthogonal eigenvectors for the eigenvalue 0 and verify that now all eigenvectors are orthogonal. [4]
(c) Explain why the procedure in (a) will always give a rank 1 matrix if B is $n \times 1$ and not all zeroes. What will the other eigenvalue be for a general B ?

Q3. (a) Show that these vectors are not independent and hence find their dependency. [7]

$$
\underline{v}_{1}:=\left(\begin{array}{r}
-2 \\
2 \\
-2 \\
1
\end{array}\right), \quad \underline{v}_{2}:=\left(\begin{array}{l}
2 \\
1 \\
3 \\
2
\end{array}\right), \quad \underline{v}_{3}:=\left(\begin{array}{l}
3 \\
1 \\
1 \\
0
\end{array}\right), \underline{v}_{4}:=\left(\begin{array}{r}
2 \\
-1 \\
1 \\
-1
\end{array}\right)
$$

(b) Check that $\underline{n}:=\left(\begin{array}{r}2 \\ -3 \\ -3 \\ 4\end{array}\right)$ is the normal to the hyperplane with $\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}$ and \underline{v}_{4} as direction vectors, find the parametric form of the space S which is perpendicular to both \underline{v}_{1} and \underline{v}_{2} and find the parameters which show that \underline{n} is in S.

Q4. Two quantities are related by the following recurrences:

$$
c_{k+1}:=-\frac{94}{3} c_{k}+40 d_{k}, \quad d_{k+1}:=-24 c_{k}+\frac{92}{3} d_{k}, \quad c_{0}:=99, \quad d_{0}:=180
$$

(a) Diagonalise the underlying matrix of these equations and hence find a formula for c_{n} and d_{n} in terms of powers of the eigenvalues.
(b) What different value of c_{0} would ensure that c_{n} remains positive for all n ? Use logarithms to find (for this c_{0}) the smallest n such that $d_{n}<1$.

Q5. (a) Use the rules of matrix algebra to fully simplify this expression for the unknown matrix X, assuming all inverses exist.

$$
A\left(X^{T} B-2 A^{T}\right)=\left(A-3 B^{T}\right) B
$$

(b) Check if X only contains small integers using $A:=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$ and $B:=\left(\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right)$. Substitute your matrices back into the equation in (a) to see if equality holds. [4]

Q6. (a) Determine which line L in \mathbb{R}^{3} passes through the points $\left(\begin{array}{r}6 \\ 5 \\ -4\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 2 \\ 5\end{array}\right)$ [2]
(b) Let P be the plane with dot product equation $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \circ\left(\begin{array}{r}-4 \\ 3 \\ 3\end{array}\right)=0$. At which point do P and L meet?
(c) Find where P intersects the plane $Q:=\left(\begin{array}{r}0 \\ -13 \\ 0\end{array}\right)+s \times\left(\begin{array}{l}1 \\ 5 \\ 0\end{array}\right)+t \times\left(\begin{array}{r}-1 \\ -2 \\ 1\end{array}\right)$. Where do L and Q intersect?

Q7. (a) Give reasons why each of the three vector space axioms are true or false for this subset of $\mathbb{R}^{2}:(x, y)$ such that $y \geq x^{2}$.
(b) Diagonalise $W:=\left(\begin{array}{rr}24 & 20 \\ -15 & -11\end{array}\right)$ to get an expression for W^{k}. Evaluate $W^{\frac{1}{2}}$ using the diagonalisation formula and check that squaring it does give W.
(c) Change the diagonalisation matrix D in (b) to find two other different matrices which will give W when squared.

