Math1204 Handout 4: Polynomial Curve Fitting

Sometimes we may have data that we want to find out either an exact relationship between it or a best fit, in some sense. We can approach this method using Matrix Algebra as follows.

1. Given the m data points of the form $\left\{\left(x_{1}, y_{1}\right), \ldots\left(x_{m}, y_{m}\right)\right\}$, decide what kind of polynomial we want to fit to the data, say a polynomial of maximum degree n;

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

- Ideally we would like an exact relationship so that we look for coefficients a_{0}, \ldots, a_{n} such that $y_{j}=a_{0}+a_{1} x_{j}+a_{2} x_{j}^{2}+\cdots+a_{n} x_{j}^{n}$ for all values of j from 1 to m.
- We form the $m \times(n+1)$ Vandermonde Matrix A from our x_{j} values:

$$
A:=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right)
$$

- If there is a solution to the equation $A \underline{v}=\underline{w}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{m}\end{array}\right)$ then we have a polynomial which passes through all of the data points.

2. If there isn't an exact fit polynomial then we have to follow a slightly more complex procedure.

- We still consider the equation $A \underline{v}=\underline{w}$, but this time pre-multiply both sides by A^{T}, giving a square matrix equation

$$
\left(A^{T} A\right) \underline{v}=A^{T} \underline{w}
$$

- This can then be solved using row operations, inverses or the adjoint as appropriate.

Example: The best fit quadratic to the data: $(-1,11),(1,0),(2,-1),(3,1),(0,-3)$

$$
\begin{gathered}
A:=\left(\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 0 & 0
\end{array}\right) \cdot \underline{w}:=\left(\begin{array}{r}
11 \\
0 \\
-1 \\
1 \\
-3
\end{array}\right) \\
A^{T} A=\left(\begin{array}{rrr}
5 & 5 & 15 \\
5 & 15 & 35 \\
15 & 35 & 99
\end{array}\right), \quad A^{T} \underline{w}=\left(\begin{array}{r}
8 \\
-10 \\
16
\end{array}\right), \quad \underline{v}=\left(\begin{array}{r}
\frac{7}{5} \\
-\frac{29}{5} \\
2
\end{array}\right)
\end{gathered}
$$

Thus the best fit polynomial is $f(x)=2 x^{2}-\frac{29 x}{5}+\frac{7}{5}=\frac{10 x^{2}-29 x+7}{5}$.

