## Math1204 Handout 5: Lines, Planes, etc.

We can use matrices to model sets of points in spaces of any dimension. We use $n \times 1$ column vectors to give the position in the space and define the dot product of two vectors $\underline{v}$ and $\underline{w}$ as $\underline{v} \circ \underline{w}:=\underline{v}^{T} \underline{w}$, using matrix transposition and multiplication.

- The familiar $x-y$ plane is the 2 -dimensional vector space $\mathbb{R}^{2}$, where $x$ and $y$ can be any real numbers, usually $x$ is the horizontal distance and $y$ is the vertical distance. The standard equation of a line $y=m x+b$ can be represented in vector format as follows, substituting $x=\alpha$ as it is any real number:

$$
\underline{v}=\binom{x}{y}=\binom{x}{m x+b}=\binom{1}{m} \times \alpha+\binom{0}{b}=\underline{w} \times \alpha+\underline{u}
$$

- In general $n$ dimensional space $\mathbb{R}^{n}$ we have a similar format for a line: $\underline{v}=\underline{w} \times \alpha+\underline{u}$, but now $\underline{u}$ (a point on the line) and $\underline{w}$ (the direction of the line, which can't be $\underline{0}$ ) have $n$ numbers in them and $\underline{v}$ is our general point on the line.
- In a similar way we can describe a 2-dimensional set of points, using two directions. Such a set is called a plane, so long as the directions are different so it doesn't collapse to just give us a line. The general equation for a plane in $n$ dimensions uses the directions $\underline{w}_{1}$ and $\underline{w}_{2}$ or (in 3 d ) $\underline{n}$ the normal vector:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\underline{w}_{1} \times \alpha_{1}+\underline{w}_{2} \times \alpha_{2}+\underline{u} \quad, \quad \text { in 3d only }:\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \circ \underline{n}=t \quad\left(\underline{w}_{1} \circ \underline{n}=0, \underline{w}_{2} \circ \underline{n}=0\right)
$$

- The condition for two directions to be different is just that $\underline{w}_{1}$ and $\underline{w}_{2}$ are not multiples of each other, but we can generalise this idea to give us the concept of independent vectors. We want to be sure that the only solution to the following equation is the trivial one, that is, if

$$
\sum_{j=1}^{k}\left(\underline{w}_{j} \times \alpha_{j}\right)=\underline{w}_{1} \times \alpha_{1}+\underline{w}_{2} \times \alpha_{2}+\ldots+\underline{w}_{k} \times \alpha_{k}=\underline{0} \quad \text { or } \quad\left(\begin{array}{cccc} 
& & & \\
& & \\
\underline{w}_{1} & \underline{w}_{2} & \ldots & \underline{w}_{k} \\
& & & \vdots \\
& & 0
\end{array}\right)
$$

then we must have $\alpha_{1}=0, \alpha_{2}=0, \ldots, \alpha_{k}=0$. We can represent this as a homogeneous system of equations that only has the trivial solution, or equivalently, the rank of the matrix of vectors is $k$.

- A general space of dimension $k$ in $\mathbb{R}^{n}$ is made from $k$ independent direction vectors $(k \leq n)$.

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\underline{w}_{1} \times \alpha_{1}+\underline{w}_{2} \times \alpha_{2}+\ldots+\underline{w}_{k} \times \alpha_{k}+\underline{u}
$$

- Just as in $\mathbb{R}^{2}$ we can have parallel lines, we can have parallel planes, or lines parallel to planes, but there is a useful general rule that can indicate what kind of set of points is most likely to be in two sets, using dimensions. If we are in $n$-dimensional space $\left(\mathbb{R}^{n}\right)$ and want to know what the intersection of $m$ and $p$ dimensional spaces should be, then we just consider $s:=m+p-n$.
If $s$ is negative then probably they don't intersect, and if $s=0$ then it should be a point, $s=1$ should be a line, $s=2$ a plane. For instance, in 3d space two planes will usually meet in a line since $s=2+2-3=1$. In 4d two planes will usually only meet at a point as $s=2+2-4=0$ and a plane and a line probably wont meet since $s=1+2-4=-1$. Also, $s$ can't be greater than either $m$ or $p$.

