Math1204 Handout 3: Eigenvalues and vectors

Given any $n \times n$ matrix M, we can find their eigenvalues and eigenvectors as follows:

1. Find the determinant of the matrix $(M-\lambda I)$ (λ is lambda, a greek letter used for eigenvalues).

- You should get a polynomial of degree n, the characteristic polynomial $p(\lambda)$.
- The eigenvalues of M are the roots of $p(\lambda)=0$, you can find them using factorisation or other methods.
- Usually we call these eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ in the order we find them.

2. For each eigenvalue λ_{j}, we can find an eigenvector, \underline{v}_{j} (an $n \times 1$ matrix is called a vector and is identified as such by underlining it; others use $\mathbf{v}_{j}, \vec{v}_{j}$ or $\overrightarrow{v_{j}}$).

- We are solving the matrix equation $M \underline{v}_{j}=\lambda_{j} \underline{v}_{j}$ which is equivalent to the homogeneous equation $\left(M-\lambda_{j} I\right) \underline{v}_{j}=\underline{0}$, where $\underline{0}$ is the $n \times 1$ all zeros matrix.
- Subtract the value of λ_{j} from the diagonal entries of M and augment a column of zeros, then pivot as many times as possible.
- The solution(s) (without any letters multiplying them) are the eigenvector(s) of M corresponding to eigenvalue λ_{j}.
- We can check by multiplying M by each vector \underline{v}_{j} and should get λ_{j} times the vector, since $M \underline{v}_{j}=\lambda_{j} \underline{v}_{j}$.

3. Each eigenvalue will give at least one row of zeros after row operations. If λ_{j} appears more than once as a root, it can give as many as that number of eigenvectors, but not necessarily more than one.
Example: If $M:=\left(\begin{array}{ccc}-13 & 24 & 4 \\ -3 & 5 & 1 \\ -15 & 30 & 4\end{array}\right)$ then we take the determinant of $M-\lambda I$ which can be calculated to be $\lambda^{3}+4 \lambda^{2}+5 \lambda+2=(\lambda+2)(\lambda+1)^{2}$ (all combinations of row/col ops work for this $M-\lambda I)$. Thus the eigenvalues are $\lambda_{1}=-2$ and $\lambda_{2}=-1$, and λ_{2} has multiplicity 2. We can now use row operations to solve $(M-(-2) I) \underline{v}=\underline{0}$ and $(M-(-1) I) \underline{v}=\underline{0}$, that is, after using row operations we get these matrices to solve for \underline{v}_{1} and \underline{v}_{2} :

$$
\begin{aligned}
& \left(\begin{array}{rrr}
-11 & 24 & 4 \vdots 0 \\
-3 & 7 & 1 \vdots 0 \\
-15 & 30 & 6 \vdots 0
\end{array}\right) \longrightarrow\left(\begin{array}{rrr}
1 & -4 & 0 \vdots 0 \\
0 & -5 & 1 \vdots 0 \\
0 & 0 & 0 \vdots 0
\end{array}\right), \quad\left(\begin{array}{rrr}
-12 & 24 & 4 \vdots 0 \\
-3 & 6 & 1 \vdots 0 \\
-15 & 30 & 5 \vdots 0
\end{array}\right) \longrightarrow\left(\begin{array}{rrr:}
-3 & 6 & 1 \vdots 0 \\
0 & 0 & 0 \vdots 0 \\
0 & 0 & 0 \vdots 0
\end{array}\right) \\
& \text { From this we can get that the eigenvectors of } M \text { are }\left(\begin{array}{l}
4 \\
1 \\
5
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
3
\end{array}\right) \text { and }\left(\begin{array}{r}
0 \\
-1 \\
6
\end{array}\right) \text {. }
\end{aligned}
$$

