Math1204 Handout 3: Eigenvalues and vectors

Given any $n \times n$ matrix M, we can find their eigenvalues and eigenvectors as follows:

- 1. Find the determinant of the matrix $(M \lambda I)$ (λ is lambda, a greek letter used for eigenvalues).
 - You should get a polynomial of degree n, the characteristic polynomial $p(\lambda)$.
 - The eigenvalues of M are the roots of $p(\lambda) = 0$, you can find them using factorisation or other methods.
 - Usually we call these eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ in the order we find them.
- 2. For each eigenvalue λ_j , we can find an eigenvector, \underline{v}_j (an $n \times 1$ matrix is called a vector and is identified as such by underlining it; others use \mathbf{v}_j , \vec{v}_j or \vec{v}_j).
 - We are solving the matrix equation $M\underline{v}_j = \lambda_j\underline{v}_j$ which is equivalent to the homogeneous equation $(M - \lambda_j I)\underline{v}_j = \underline{0}$, where $\underline{0}$ is the $n \times 1$ all zeros matrix.
 - Subtract the value of λ_j from the diagonal entries of M and augment a column of zeros, then pivot as many times as possible.
 - The solution(s) (without any letters multiplying them) are the eigenvector(s) of M corresponding to eigenvalue λ_i.
 - We can check by multiplying M by each vector \underline{v}_j and should get λ_j times the vector, since $M\underline{v}_j = \lambda_j \underline{v}_j$.
- 3. Each eigenvalue will give at least one row of zeros after row operations. If λ_j appears more than once as a root, it can give as many as that number of eigenvectors, but not necessarily more than one.

Example: If $M := \begin{pmatrix} -13 & 24 & 4 \\ -3 & 5 & 1 \\ -15 & 30 & 4 \end{pmatrix}$ then we take the determinant of $M - \lambda I$ which can be

calculated to be $\lambda^3 + 4\lambda^2 + 5\lambda + 2 = (\lambda + 2)(\lambda + 1)^2$ (all combinations of row/col ops work for this $M - \lambda I$). Thus the eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = -1$, and λ_2 has multiplicity 2. We can now use row operations to solve $(M - (-2)I)\underline{v} = \underline{0}$ and $(M - (-1)I)\underline{v} = \underline{0}$, that is, after using row operations we get these matrices to solve for \underline{v}_1 and \underline{v}_2 :

$$\begin{pmatrix} -11 & 24 & 4 \vdots 0 \\ -3 & 7 & 1 \vdots 0 \\ -15 & 30 & 6 \vdots 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -4 & 0 \vdots 0 \\ 0 & -5 & 1 \vdots 0 \\ 0 & 0 & 0 \vdots 0 \end{pmatrix}, \quad \begin{pmatrix} -12 & 24 & 4 \vdots 0 \\ -3 & 6 & 1 \vdots 0 \\ -15 & 30 & 5 \vdots 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -3 & 6 & 1 \vdots 0 \\ 0 & 0 & 0 \vdots 0 \\ 0 & 0 & 0 \vdots 0 \end{pmatrix}$$

From this we can get that the eigenvectors of M are $\begin{pmatrix} 4 \\ 1 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -1 \\ 6 \end{pmatrix}$.