Math1204 Handout 4: Polynomial Curve Fitting

Sometimes we may have data that we want to find out either an exact relationship between it or a best fit, in some sense. We can approach this method using Matrix Algebra as follows.

1. Given the m data points of the form $\left\{\left(x_{1}, y_{1}\right), \ldots\left(x_{m}, y_{m}\right)\right\}$, decide what kind of polynomial we want to fit to the data, say a polynomial of maximum degree n;

$$
f(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

- Ideally we would like an exact relationship so that we look for coefficients a_{0}, \ldots, a_{n} such that $y_{j}=a_{n} x_{j}^{n}+\cdots+a_{2} x_{j}^{2}+a_{1} x_{j}+a_{0}$ for all values of j from 1 to m.
- We form the $m \times(n+1)$ Matrix M from our x_{j} and \underline{y} from the y_{j}.

$$
M:=\left(\begin{array}{ccccc}
x_{1}^{n} & \ldots & x_{1}^{2} & x_{1} & 1 \\
x_{2}^{n} & \ldots & x_{2}^{2} & x_{2} & 1 \\
\vdots & & \vdots & \vdots & \vdots \\
x_{m}^{n} & \ldots & x_{m}^{2} & x_{m} & 1
\end{array}\right) \quad, \quad \underline{y}:=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

- If there is a solution to the matrix equation $M \underline{v}=\underline{y}$ then we have a polynomial which passes through all of the data points.

2. If there isn't an exact fit polynomial then we have to follow a slightly more complex procedure.

- We still consider the equation $M \underline{v}=\underline{y}$, but this time left multiply both sides by M^{T}, giving an $(n+1) \times(n+1)$ matrix equation: $\left(M^{T} M\right) \underline{v}=\left(M^{T} \underline{y}\right)$
- This can then be solved using row operations, inverses or the adjoint as appropriate.

Example: The best fit quadratic to the data: $(2,2),(-1,4),(4,3),(1,-3)$

$$
M:=\left(\begin{array}{rrr}
4 & 2 & 1 \\
1 & -1 & 1 \\
16 & 4 & 1 \\
1 & 1 & 1
\end{array}\right), \underline{y}:=\left(\begin{array}{r}
2 \\
4 \\
3 \\
-3
\end{array}\right), \quad \begin{aligned}
& \sum_{j=1}^{5} x_{j}^{0}=4, \sum_{j=1}^{4} x_{j}=2-1+4+1=6 \\
& \sum_{j=1}^{5} x_{j}^{2}=22, \sum_{j=1}^{5} x_{j}^{3}=72, \sum_{j=1}^{5} x_{j}^{4}=274
\end{aligned}
$$

Using the sums of powers of the x_{j} and combining them with the y_{j} by multiplication:

$$
M^{T} M=\left(\begin{array}{ccc}
274 & 72 & 22 \\
72 & 22 & 6 \\
22 & 6 & 4
\end{array}\right), \quad M^{T} \underline{y}=\left(\begin{array}{c}
57 \\
9 \\
6
\end{array}\right) \text { and row ops give } \underline{v}=\left(\begin{array}{c}
\frac{2}{3} \\
-2 \\
\frac{5}{6}
\end{array}\right)
$$

Thus the best fit quadratic polynomial is $f(x)=\frac{2}{3} x^{2}-2 x+\frac{5}{6}=\frac{4 x^{2}-12 x+5}{6}$.

Tabulating we see: | x_{j} | y_{j} | $f\left(x_{j}\right)$ | $y_{j}-f\left(x_{j}\right)$ |
| :---: | :---: | :---: | :---: |
| 2 | 2 | $-1 / 2$ | $5 / 2$ |
| -1 | 4 | $7 / 2$ | $1 / 2$ |
| 4 | 3 | $7 / 2$ | $-1 / 2$ |
| 1 | -3 | $-1 / 2$ | $-5 / 2$ | and note that the sum of the differences is 0.

