Math1204 Test 4

March 14 ${ }^{\text {th }}$, 2018

Answer all questions and give complete reasons and checks for your answers. Please do not erase anything, just put a line through your work and continue; you cannot lose marks for anything you write. The parts of the questions are weighted as shown and can be answered in any order.

1. For this question we will be investigating the recurrence:

$$
c_{k+2}:=4 c_{k+1}+9 c_{k}-36 c_{k-1}, \quad c_{0}:=9, c_{1}:=65, c_{2}:=74
$$

(a) Use the recurrence to directly calculate c_{3}.
(b) Find all roots of the equation $x^{3}-4 x^{2}-9 x+36$ using trial substitution and long division if necessary.
(c) Use the roots from (b) to give the eigenvectors of the matrix underlying the recurrence and, with P as the matrix of eigenvectors, solve $P \underline{w}=\left(\begin{array}{c}74 \\ 65 \\ 9\end{array}\right)$ using row operations.
(d) Give the general formula for c_{k} using your \underline{w} from (c), check the values the formula gives for c_{3} and c_{4}. Explain why, with these eigenvalues, c_{4} can be less than c_{3}, and which values of k should be considered for trying to find when c_{k} first goes negative, and identify which c_{k} is the first negative.
2. (a) Find the best fit straight line to this data using the 2×2 matrix method, giving each step.

x_{j}	1	-1	-3	5	3
y_{j}	6	12	14	4	6

(b) Calculate the values of your best fit line at each of the x_{j} values and the differences from the corresponding y_{j} values. Use them to draw the graph and find the smallest integer value of x at which the best fit line becomes negative.

