Math1204 Test 5

March $28^{\text {th }}, 2018$

Answer all questions and give complete reasons and checks for your answers. Please do not erase anything, just put a line through your work and continue; you cannot lose marks for anything you write. The parts of the questions are weighted as shown and can be answered in any order.

1. Consider a plane P and a line L with the following parametric forms:

$$
P:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right)+j \times\left(\begin{array}{l}
3 \\
3 \\
7
\end{array}\right)+k \times\left(\begin{array}{l}
4 \\
5 \\
5
\end{array}\right), \quad L:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
6 \\
-1 \\
9
\end{array}\right)+t \times\left(\begin{array}{c}
7 \\
11 \\
1
\end{array}\right)
$$

(a) Determine the dot product form of the plane P using row operations.
(b) Use your answer to (a) to find the point at which P and L intersect.
(c) Solve a matrix equation to find the values of j and k for the parametric form of P at the point of intersection from (b).
2. Let S be the set of points in the (x, y) plane such that $y \leq x^{2}$. Show that only one of the three vector subspace axioms is true for S and find counterexamples for the other two axioms.
3. We will be dealing with the following vectors in this question:

$$
\underline{v}_{1}:=\left(\begin{array}{r}
2 \\
1 \\
0 \\
-2
\end{array}\right) \quad, \quad \underline{v}_{2}:=\left(\begin{array}{l}
1 \\
2 \\
3 \\
2
\end{array}\right) \quad, \quad \underline{v}_{3}:=\left(\begin{array}{r}
3 \\
-4 \\
1 \\
2
\end{array}\right)
$$

(a) Answer just one of i. or ii.
i. Prove that $\underline{v}_{1}, \underline{v}_{2}$ and \underline{v}_{3} are independent using row operations. or
ii. Determine the dot product equation of the hyperplane H that contains \underline{v}_{1}, \underline{v}_{2} and \underline{v}_{3} as direction vectors and passes through the origin.
(b) Use Gram-Schmidt to find an orthogonal set of vectors using $\underline{v}_{1}, \underline{v}_{2}$ and \underline{v}_{3}.

