Math-2301 Algebra Handout 2022

A matrix is of size $m \times n$ (read " m times n ") if it has m rows and n columns each containing real numbers. C is square if it is $n \times n$. An $m \times 1$ matrix is called a vector.

Two matrices can only be added or subtracted only if they are of the same size. Two matrices A and B can only be multiplied to form $A B$ if A is of size $m \times n$ and B is $n \times p$. In this case $A B$ will be of size $m \times p$. Recall that, in general, $A B \neq B A$.

The scalar multiple of a matrix $\alpha \times B$ is formed by multiplying all entries of B by the real number $\alpha . I$ is the identity matrix which has zeros everywhere apart from ones on the top left to bottom right diagonal.

For us, only square matrices can have inverses, although a square matrix C might not have an inverse, it will be a "singular" matrix. The thing that will determine whether or not C has an inverse is the determinant of C, which we will study soon.

The following relations are true for any matrices (if they can be multiplied/added/inverted):

$(X+Y)=(Y+X)$	Additive Commutativity
$(X+Y)+Z=X+(Y+Z)$	Additive Associativity
$X(Y Z)=(X Y) Z$	Multiplicative Associativity
$X(Y+Z)=(X Y)+(X Z)$	Right Distributivity
$(X+Y) Z=(X Z)+(Y Z)$	Left Distributivity
$X\left(X^{-1}\right)=I$	Right Inverse
$\left(X^{-1}\right) X=I$	Left Inverse
$\left(X^{-1}\right)^{-1}=X$	Double Inverse
$(X Y)^{-1}=\left(Y^{-1}\right)\left(X^{-1}\right)$	Inverse Product
$(X I)=X$	Right Identity
$(I X)=X$	Left Identity
$X^{2}=X X$	Matrix Square
$(X Y)^{2}=X Y X Y$	Square Product
$(X+Y)^{2}=X^{2}+X Y+Y X+Y^{2}$	Square Sum
$(X+Y)^{T}=\left(X^{T}\right)+\left(Y^{T}\right)$	Transpose Sum
$(X Y)^{T}=\left(Y^{T}\right)\left(X^{T}\right)$	Transpose Product
$\left(X^{T}\right)^{T}=X$	Repeated Transpose
$\left(X^{T}\right)^{-1}=\left(X^{-1}\right)^{T}$	Transpose Inverse
$(\alpha \times X) Y=\alpha \times(X Y)$	Left Scalar Associativity
$X(\alpha \times Y)=\alpha \times(X Y)$	Right Scalar Associativity
$(\alpha \times X)^{T}=\alpha \times\left(X^{T}\right)$	Scalar Transpose
$(\alpha \times X)^{-1}=\alpha^{-1} \times\left(X^{-1}\right)$	Scalar Inverse $(\alpha \neq 0)$
$\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$	Determinant Product
$\operatorname{det}\left(X^{T}\right)=\operatorname{det}(X)$	Determinant Transpose
$\operatorname{det}\left(X^{-1}\right)=(\operatorname{det}(X))^{-1}$	Determinant Inverse
$\operatorname{det}(\alpha X)=\left(\alpha^{n}\right) \operatorname{det}(X)$	Scalar Determinant $(X$ is $n \times n)$

