Math 2103 Handout 1: Vector Space Axioms

Given any set V of ordered lists of elements from a number system (called vectors in general) which can be added together and multiplied by a number from that same system (a scalar), the following ten axioms must hold for V to be a vector space.

- Additive Rules:

A1. Closure: if \underline{v} and \underline{w} are in V then $(\underline{v}+\underline{w}) \in V$. (\in means "is in")
A2. Commutativity: if \underline{v} and \underline{w} are in V then $(\underline{v}+\underline{w})=(\underline{w}+\underline{v})$.
A3. Additive Associativity: if $\underline{u}, \underline{v}$ and \underline{w} are in V then $(\underline{u}+\underline{v})+\underline{w}=\underline{u}+(\underline{v}+\underline{w})$
A4. Additive Identity: there exists a vector $\underline{0} \in V$ such that $(\underline{v}+\underline{0})=\underline{v}$ for all $\underline{v} \in V$.
A5. Inverse: For each $\underline{v} \in V$ there is an element $(-\underline{v}) \in V$ such that $\underline{v}+(-\underline{v})=\underline{0}$.

- Scalar Multiplication Rules:

S1. Closure: if $\underline{v} \in V$ then $\alpha \times \underline{v} \in V$ for all scalars α.
S2. Scalar Distributivity: $\alpha \times(\underline{v}+\underline{w})=(\alpha \times \underline{v})+(\alpha \times \underline{w})$ for all scalars α and all vectors \underline{v} and \underline{w}.
S3. Vector Distributivity: $(\alpha+\beta) \times \underline{v}=(\alpha \times \underline{v})+(\beta \times \underline{v})$ for all scalars α and β and all $\underline{v} \in V$.
S4. Scalar Associativity: $\alpha \times(\beta \times \underline{v})=(\alpha \times \beta) \times \underline{v}$ for all scalars α and β and all $\underline{v} \in V$.
S5. Scalar Identity: $1 \times \underline{v}=\underline{v}$ for the scalar identity element 1 and any $\underline{v} \in V$.

