Math 226 Test 3: Linear Transformations and Isomorphisms

November 4, 2005

Each question is weighted as shown in square brackets, use the appropriate amount of time and space to answer all parts. Give all working and reasoning for each question to achieve full marks.

The answers must be entirely your own work, and a statement to this effect should preface your answers. Plagiarism will be detected and the appropriate academic penalties enforced.

1. (a) Prove that this set of matrices forms a basis for $\mathbb{M}_{2,2}$, the 2×2 matrices.

$$
b_{1}:=\left(\begin{array}{ll}
3 & 0 \\
3 & 1
\end{array}\right), \quad b_{2}:=\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right), \quad b_{3}:=\left(\begin{array}{cc}
-1 & 1 \\
-2 & 0
\end{array}\right), \quad b_{4}:=\left(\begin{array}{cc}
-3 & 1 \\
-3 & 1
\end{array}\right)
$$

(b) Find the linear transform which maps $\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ to the four vectors of the standard basis in terms of its effect on the general 2×2 matrix.
(c) By calculating the kernel prove that the linear transform in (b) is an isomorphism.
2. (a) One of these is not a linear transformation; identify it by checking the two linear transformation axioms for all three transformations.

$$
\begin{gathered}
R\left(a x^{2}+b x+c\right):=\left(\begin{array}{cc}
2 a-c & c+b \\
b+2 a & 0 \\
2 c+b-2 a & c-2 a
\end{array}\right), S\left(\left(\begin{array}{cc}
g & h \\
i & j
\end{array}\right)\right):=(g+i-2 j) x+(j-g) \\
\\
T\left(k x^{3}+l x^{2}+m x+n\right):=\left(\begin{array}{c}
k+2 l \\
m^{2} \div n \\
l+2 n-
\end{array}\right)
\end{gathered}
$$

(b) Find the kernel and image space of the other two.
3. Prove that if $\left\{v_{1}, \ldots, v_{n}\right\}$ are independent vectors then

$$
\left\{v_{1}-2 v_{2}+v_{3}, 2 v_{2}-4 v_{3}+2 v_{4}, \ldots, 2^{n-1} v_{n-1}-2^{n} v_{n}+2^{n-1} v_{1}, 2^{n} v_{n}-2^{n+1} v_{1}+2^{n} v_{2}\right\}
$$

is not but $\left\{v_{1}-v_{2}+v_{3}, v_{2}-v_{3}+v_{4}, \ldots v_{n-1}-v_{n}+v_{1}, v_{n}-v_{1}+v_{2}\right\}$ is.

