Math 226 Test 4: Linear Operators and Inner Spaces

November 28, 2005

Each question is weighted as shown in square brackets, use the appropriate amount of time and space to answer all parts. Give all working and reasoning for each question to achieve full marks.

The answers must be entirely your own work, and a statement to this effect should preface your answers. Plagiarism will be detected and the appropriate academic penalties enforced.

1. (a) Given this linear operator

$$
T\left(a+b x+c x^{2}\right):=\left(2 c-\frac{b}{2}\right)+\left(2 c-\frac{5 b}{2}-a\right) x+\left(3 c-\frac{3 b}{2}-1\right) x^{2}
$$

show that the subspace $U:=\operatorname{span}\left(\left\{1-2 x, 3+2 x^{2}\right\}\right)$ is T-invariant.
(b) Prove that $W:=\left\{k(1-x)^{2} ; k \in \mathbb{R}\right\}$ and U have direct sum \mathbb{P}^{2}.
(c) Prove that W is not T-invariant.
2. (a) Manipluate the rules of inner products to show that

$$
\langle v, w\rangle \leq \frac{\langle v, v\rangle+\langle w, w\rangle}{2}
$$

and determine under what circumstances equality occurs.
[Hint: use the inner product of $u:=v-w$ with itself]
(b) Verify axioms P1 and P4 for this inner product:

$$
\left\langle\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right),\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)\right\rangle:=u_{1} v_{1}-2 u_{1} v_{3}+3 u_{2} v_{2}-4 u_{2} v_{3}-2 u_{3} v_{1}-4 u_{3} v_{2}+10 u_{3} v_{3}
$$

(c) Using the above inner product with the standard basis to find an orthogonal basis for \mathbb{R}^{3} using the Gram-Schmidt Method.

