Math 226 Handout 1: Vector Space Axioms

Given any set V of elements (called vectors) that can be added together and multiplied by a number from the same number system (a scalar), the following axioms must hold for V to be a **vector space**.

• Additive Rules:

- **A1.** Closure: if \underline{v} and \underline{w} are in V then $(\underline{v} + \underline{w}) \in V$.
- **A2.** Commutativity: if \underline{v} and \underline{w} are in V then $(\underline{v} + \underline{w}) = (\underline{w} + \underline{v})$.
- **A3.** Additive Associativity: if \underline{u} , \underline{v} and \underline{w} are in V then $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$
- **A4.** Additive Identity: there exists a vector $\underline{0} \in V$ such that $(\underline{v} + \underline{0}) = \underline{v}$ for all $\underline{v} \in V$.
- **A5.** Inverse: For each $\underline{v} \in V$ there is an element $(-\underline{v}) \in V$ such that $\underline{v} + (-\underline{v}) = \underline{0}$.

• Scalar Multiplication Rules:

- **S1.** Closure: if $\underline{v} \in V$ then $\alpha \times \underline{v} \in V$ for all scalars α .
- **S2.** Scalar Distributivity: $\alpha \times (\underline{v} + \underline{w}) = (\alpha \times \underline{v}) + (\alpha \times \underline{w})$ for all scalars α and all vectors \underline{v} and \underline{w} .
- **S3.** Vector Distributivity: $(\alpha + \beta) \times \underline{v} = (\alpha \times \underline{v}) + (\beta \times \underline{v})$ for all scalars α and β and all $\underline{v} \in V$.
- **S4.** Scalar Associativity: $\alpha \times (\beta \times \underline{v}) = (\alpha \times \beta) \times \underline{v}$ for all scalars α and β and all $\underline{v} \in V$.
- **S5.** Scalar Identity: $1 \times \underline{v} = \underline{v}$ for the scalar identity element 1 and any $\underline{v} \in V$.