Math4101 Graph Theory: Assignment 2 (February 2012)

Please show all working and reasoning to get full marks for any question. Hand in your rough working as well so I can see how you investigated and reached your final results. You are reminded that plagiarism is a serious offense and when it is detected you will be punished.

1. Prove that if two vertices v and w are joined by an edge then $|\varepsilon(v)-\varepsilon(w)| \leq 1$, by contradiction.
2. Suppose G_{1} and G_{2} are bipartite graphs. You can choose examples for them to test the properties and show that you understand but should prove the properties for any graphs.
(a) Explain why $G_{1} \square G_{2}$ (the cartesian product) is bipartite and this is the only way you can get a cross product to be bipartite.
(b) Prove that $G_{1} \times G_{2}$ (the tensor product) is both bipartite and disconnected. Explain how a closed walk of odd length in G_{1} could lead to connectedness of the tensor product.
(c) Under what circumstances could $G_{1} \circ G_{2}$ (the corona product) be bipartite?
3. Use the block form of the adjacency matrices of bipartite graphs to explain why if λ is an eigenvalue of a bipartite graph then $-\lambda$ is also an eigenvalue with a closely related eigenvector. Choose a small bipartite graph not used in class or chosen by a classmate and find its eigenvalues and eigenvectors and check that this relation holds.
4. (a) Create a 4-regular graph (unique within the class) with 9 vertices and determine whether or not it is self-complementary.
(b) By considering complements count the number of non-isomorphic 4-regular graphs with less than 9 vertices.
(c) Explain why not every 4-regular graph with n vertices can be formed from one with $n-1$ vertices by removing two edges with no vertices in common and adding four edges replacing the two which were removed to a new vertex; find a unique example with more than 6 vertices for which no vertex can be removed without creating a multiple edge in the smaller 4-regular graph. Find a way to reduce your graph by removing 2 vertices and rejoining edges and explain for which graphs it would fail.
