Math415 Graph Theory: Assignment 1 (October 2007)

Please show all working and reasoning to get full marks for any question. Hand in your rough working as well so I can see how you investigated and reached your final results.

1. (a) Find a 9 vertex self-complementary graph which is different from everyone else in the class (register your graph with me to be sure no one else claims it)
(b) Prove your graph is self-complementary by giving the isomorphism between the graph and its complement and check each edge appears in both.
(c) Prove that in any self-complementary graph on n vertices there are an even number of vertices of every valency apart from perhaps $\frac{n-1}{2}$. If you can't get that far, try to at least prove that 3 vertices of one valency are impossible.
2. (a) Determine all different graphs with valency sequence $(4,4,3,3,2,2)$.
(b) Prove all the graphs you give me are non-isomorphic and explain why, in the process you followed, none of the valency sequence have been missed.
3. Define the tensor product of two graphs as follows:

$$
\begin{aligned}
V(G \square H) & :=\{(g, h) ; g \in V(G), h \in V(H)\} \\
E(G \square H) & :=\left\{\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) ; g_{1} g_{2} \in E(G), h_{1} h_{2} \in E(H)\right\}
\end{aligned}
$$

(a) Find a nice representation in terms of other products for the graph $P_{2} \square K_{1,3}$. [3]
(b) Explain why $G \square H$ is regular if both G and H are by determining the valency of a general vertex in the tensor product.
(c) Determine which graph is $K_{2} \square C_{n}$ for $n \geq 3$.
4. How can you recognise and reconstruct a disconnected graph from its deck?

