Math415 Graph Theory: Assignment 4 (December 2007)

Please show all working and reasoning to get full marks for any question. Hand in your rough working as well so I can see how you investigated and reached your final results. You are reminded that plagiarism is a serious offense and if it is detected you will be punished.

1. (a) Suppose you have a Hamiltonian graph G, prove that G must have an even number of vertices to allow it to have a perfect matching. Give an example of a nonHamiltonian graph with 8 vertices and a Hamiltonian graph with 9 vertices. [3]
(b) Explain why an even vertexed cubic Hamiltonian graph will contain three edgedisjoint perfect matchings. Find these matchings in the dodecahedron, the unique cubic graph in which every face is a pentagon.
(c) Consider some generalisations of this problem:
i. Show that for every $r \geq 2$ that $K_{2 r}$ and $K_{r, r}$ are regular Hamiltonian graphs which contain r edge-disjoint perfect matchings.
ii. Prove that it is not true for any $r \geq 2$ that all $2 r$-regular Hamiltonian graphs of vertices will contain $2 r$ edge-disjoint perfect matchings.
iii. Prove that an s-regular Hamiltonian graph doesn't even have to contain 2 edge disjoint Hamiltonian cycles if $s \geq 4$.
(d) Verify that Grinberg's Theorem is satisfied in the dodecahedron. If the faces in a planar graph are only pentagons and at most two i-gons what possible values can i have? Give an example with $i>5$.
(e) Prove that every 2-connected cubic graph has a perfect matching by showing such a graph must satisfy Tutte's condition.
[Hint: consider the sums of valencies in the odd components of $G-S$]
2. (a) What are $\delta(G \circ H)$ and $\beta(G \circ H)$ for a general G and H ?
(b) What are $\alpha(G+H)$ and $\alpha^{\prime}(G+H)$ in general?
(c) What criteria must be put on G and H for $G \times H$ to be Eulerian? If both G and H are connected does $G \times H$ have to be Hamiltonian?
(d) Prove that $\alpha^{\prime}(G) \leq \frac{n}{2} \leq \beta^{\prime}(G)$ for any n vertex graph G without any K_{1} components. What bound can you prove for $\alpha(G)$ involving $\operatorname{diam}(G)$?
