Math421 Group Theory: Assignment 2 February 2006

Please show all working and reasoning to get full marks for any question.

- 1. The presentation for D_n is $\langle a, b : a^n = b^2 = abab = e \rangle$.
 - (a) Use coset enumeration with the subgroup $\langle a \rangle$ to prove that there are always 2n elements in D_n .
 - (b) Draw the Cayley diagram for D_n using a and b for the edges.
 - (c) List the elements in $G := D_5 \times \mathbb{Z}_2$ and determine the orders of each.
 - (d) Use the orders to identify an a pair of elements which can map to a and b under an isomorphism between G and D_{10} , use them to generate all the elements of Gand produce an identical Cayley diagram proving the isomorphism.
 - (e) If n = km for some odd integer k greater than 2, consider the orders of elements in D_n to show it is not isomorphic to $D_m \times \mathbb{Z}_k$ despite their orders being identical.
- 2. (a) Given two subgroups of G, H and K, use the subgroup test to prove that if HK = KH then HK is a subgroup of G also.
 - (b) If HK is a subgroup of G is it necessarily true that HK = KH?
 - (c) Using the table for A_4 find two pairs of subgroups; one for which HK is a subgroup and one for which it is not.
 - (d) What is the centre of A_n for n = 2, 3 and 4? For any larger n?
 - (e) Determine the left and right cosets in A_4 with respect to $H := \langle (234) \rangle$ and find the normal subgroup N that A_4 contains.
 - (f) Using N form the quotient group G/N and determine its group table.