Math421 Group Theory: Assignment 2 February 2006

Please show all working and reasoning to get full marks for any question.

1. The presentation for D_{n} is $\left\langle a, b: a^{n}=b^{2}=a b a b=e\right\rangle$.
(a) Use coset enumeration with the subgroup $\langle a\rangle$ to prove that there are always $2 n$ elements in D_{n}.
(b) Draw the Cayley diagram for D_{n} using a and b for the edges.
(c) List the elements in $G:=D_{5} \times \mathbb{Z}_{2}$ and determine the orders of each.
(d) Use the orders to identify an a pair of elements which can map to a and b under an isomorphism between G and D_{10}, use them to generate all the elements of G and produce an identical Cayley diagram proving the isomorphism.
(e) If $n=k m$ for some odd integer k greater than 2, consider the orders of elements in D_{n} to show it is not isomorphic to $D_{m} \times \mathbb{Z}_{k}$ despite their orders being identical.
2. (a) Given two subgroups of G, H and K, use the subgroup test to prove that if $H K=K H$ then $H K$ is a subgroup of G also.
(b) If $H K$ is a subgroup of G is it necessarily true that $H K=K H$?
(c) Using the table for A_{4} find two pairs of subgroups; one for which $H K$ is a subgroup and one for which it is not.
(d) What is the centre of A_{n} for $n=2,3$ and 4 ? For any larger n ?
(e) Determine the left and right cosets in A_{4} with respect to $H:=\langle(234)\rangle$ and find the normal subgroup N that A_{4} contains.
(f) Using N form the quotient group G / N and determine its group table.
