Math421 Group Theory: Assignment 2 February 2010

Please show all working and reasoning to get full marks for any question. Attach all rough work attempted to show your thought processes.

1. Assume that $H \cap K$ is a subgroup and prove it is normal if and only if both H and K are normal subgroups. Give an example of a non-trivial non-normal $H \cap K$ from the groups we have encountered so far.
2. Your permuation p will be the following throughout this question: (). Recall that the group S_{n} of all permutations of the numbers $\{1,2, \ldots, n\}$ has cardinality $n!$.
(a) Find each of the elements of S_{4} as a combination of p and $q:=(1234)$.
(b) Find a subgroup of each possible cardinality in S_{4}, but explain why there is no subgroup of cardinality 6 in A_{4}.
(c) Which subgroup is the centraliser of p in S_{5} ?
3. Let T be the group of cardinality 12 which has this presentation:

$$
<x, y \mid x^{4}=e, y^{3}=e, y x=x y^{2}>
$$

(a) Using subgroups and orders explain why T is different from all the other four groups we know about with 12 vertices.
(b) Using $H:=<y>$, verify it is a normal subgroup and find which group T / H is isomorphic to.
(c) Give a homomorphism f from T to $C_{2} \times C_{4}$ which has H as the kernel and use $K:=Z(T)$ to verify the second isomorphism theorem in this case.

