Math421 Group Theory: Assignment 2 February 2010

Please show all working and reasoning to get full marks for any question. Attach all rough work attempted to show your thought processes.

- 1. Assume that $H \cap K$ is a subgroup and prove it is normal if and only if both H and K are normal subgroups. Give an example of a non-trivial non-normal $H \cap K$ from the groups we have encountered so far. [5]
- 2. Your permutaion p will be the following throughout this question: (). Recall that the group S_n of all permutations of the numbers $\{1, 2, ..., n\}$ has cardinality n!.
 - (a) Find each of the elements of S_4 as a combination of p and q := (1234). [6]
 - (b) Find a subgroup of each possible cardinality in S_4 , but explain why there is no subgroup of cardinality 6 in A_4 . [4]

[1]

- (c) Which subgroup is the centraliser of p in S_5 ?
- 3. Let T be the group of cardinality 12 which has this presentation:

$$\langle x, y \mid x^4 = e, y^3 = e, yx = xy^2 \rangle$$

- (a) Using subgroups and orders explain why T is different from all the other four groups we know about with 12 vertices. [2]
- (b) Using $H := \langle y \rangle$, verify it is a normal subgroup and find which group T/H is isomorphic to. [3]
- (c) Give a homomorphism f from T to $C_2 \times C_4$ which has H as the kernel and use K := Z(T) to verify the second isomorphism theorem in this case. [4]