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1 Introduction

As its name implies, we shall be studying numbers in this course, in particular the natural numbers
1, 2, 3, . . ., normally denoted by N. We shall use negatives of the natural numbers and zero as well,
this set being the integers Z (from the German for number, Zählen). We shall, hopefully, never
have to use the real numbers R and only rarely use the rationals, Q.

1.1 Divisibility

Theorem 1.1 For any two integers b and a we can find unique integers q and r; 0 ≤ r < |a| (the
quotient and the remainder of b on division by a) such that b = aq + r.

Proof: If 0 ≤ b < a then we have the only possibility as q = 0 and r = b. For b ≥ a we can use
induction as follows: consider b− a, which is a non-negative number: by the induction hypothesis
it can be written uniquely as b− a = aq′ + r′. We can then rearrange this and, using the fact that
both r and r′ are between 0 and |a| − 1 (so that −a+ 1 < r − r′ < a− 1), we get that r = r′ and
so q = 1 + q′. It is possible to verify their uniqueness using similar logic. For b < 0 we know from
the previous lines that

−b = −aq − r =

{
a× (−q) + 0 r = 0

a× (−q − 1) + (a− r) r 6= 0

which values of the quotient and remainder satisfy the criteria. We can similarly cope with the
cases in which a is negative. �

We shall say that a divides b (written a|b) if the remainder of b on division by a is zero (so that
there exists an integer x such that a × x = b). We shall usually suppress the multiplication sign
so that the above equation would read ax = b. Thus, for example, 2|8, 3|3, −5|15 and 1| − 3. We
shall also use the same symbol with a line through it ( 6 | ) to signify doesn’t divide, so that 3 6 | 1,
56 | 9 and 06 | 11.

Lemma 1 For all n ∈ Z we have 1|n and n|0.

Proof: The x we require in the former case is n (1n = n) and in the latter it is 0. �

Lemma 2 If a|b and b|c then a|c.

Proof: Since a|b we have ax = b and similarly by = c. Hence axy = by = c and since xy is an
integer too we have a|c as required. �

Exercise 1 Show that if d|b and d|c then d|(kb+ lc).
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1.2 GCD and LLC

In the same way as in exercise 1 we can show that if a|b1, . . . , a|bn then a|k1b1 + . . . + knbn for
any integers k1, . . . kn. We define a linear combination of the integers to be a sum of the form
k1b1 + . . .+ knbn and a least linear combination (usually abbreviated to l.l.c) to be a set of values
for the ki so that the value of the linear combination is as small a positive number as possible. The
greatest common divisor (g.c.d.) of two integers a and b (usually written gcd(a, b) or (a, b) if there
is no danger of confusion) is defined as the largest integer d such that d|a and d|b.

Theorem 1.2 llc(a, b) = gcd(a,b).

Proof: Let c = llc(a,b) and d = gcd(a, b). From exercise 1 and the definition of the gcd we
see that d|c and so d ≤ c.

By theorem 1.1 we may write a = sc + u and b = tc + v, with 0 ≤ u, v < c. But since c is a
linear combination of a and b we see that both u and v are linear combinations of a and b, and,
moreover, are less than c. Since c is the least linear combination of a and b we see that u = v = 0
and so c|a and c|b. Hence c is a common divisor of a and b and so must divide d. Hence c ≤ d and
so c = d. �

We note that if a and b are not both zero then d := gcd(a, b) is bounded above by min(a, b)
(since d ≤ a and d ≤ b) and below by 1 (since 1|a and 1|b) and so is well defined. If (a, b) = 1 then
we say that a and b are relatively prime or co-prime.

Theorem 1.3 If d = (a, b) then (ad ,
b
d) = 1.

Proof: Let c := (ad ,
b
d). By the remarks before theorem 1.3 we see that c ≥ 1. We now show

that c ≤ 1 to get the required result.
By definition there exists integers s and t such that cs = a

d and ct = b
d . Hence cd|a and cd|b and so

cd is a common divisor of a and b and so cd ≤ d. Since d ≥ 1 we see that c = 1, as required. �

1.3 The Euclidean Algorithm

Lemma 3 If b = aq + r then gcd(a, b) = gcd(a, r).

Proof: Let d := gcd(a, b) := (a, b). Since r = a − qb and d|a and d|b we have, by exercise 1,
d|r. If c is any common divisor of r and a then c|aq + r = b and so c ≤ d. Thus d is the greatest
common divisor of a and r. �

Putting lemma 3 together with theorem 1.1 we get the following algorithm for finding the
greatest common divisor of any two integers b and a:
find the quotient (q) and remainder (r) of the two given numbers.

1. if r 6= 0 repeat the algorithm to find (a, r).

2. if r = 0 then the previous remainder is (b, a) and stop the algorithm.

We normally tabulate the working as follows:
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b = aq + r, 0 ≤ r < a,
a = rq1 + r1, 0 ≤ r1 < r,
r = r1q2 + r2, 0 ≤ r2 < r1,

...
...

rk−1 = rkqk+1 + rk+1, 0 ≤ rk+1 < rk,
rk = rk+1qk+2.

and so (b, a) = rk+1. We notice that since a > r > r1 > r2 > . . . ≥ 0 has a finite number of terms
in the sequence the process is guaranteed to terminate.

For example, we shall find (99, 21) using this method:

99 = 21× 4 + 15,

21 = 15× 1 + 6,

15 = 6× 2 + 3,

6 = 3× 2.

Hence (99, 21) = 3.

Exercise 2 Evaluate gcd(77, 21), gcd(8, 38) and gcd(30, 48) using the Euclidean algorithm. How
about (1026, 703) ?

By lemma 3 we do not actually have to take q and r to be the quotient and divisor of b and
a, just two numbers satisfying that equation: sometimes it is useful to be able to replace “+ri” by
“−ri” if the new value for ri is closer to zero.

For instance we can get gcd(99, 21) in one step fewer this way:

99 = 21× 5− 6,

21 = 6× 3 + 3,

6 = 3× 2.

Exercise 3 Repeat exercise 2 using this refinement of the technique to see how it can sometimes
speed things up.

We can also use the Euclidean algorithm in reverse to find a least linear combination of a and
b: using our worked example again we see that 15 = 99− 21× 4 and 6 = 21− 15× 1. Thus

llc(99, 21) = gcd(99, 21) = 3 = 15− 6× 2,

= 15− (21− 15× 1)× 2,

= 15× 3− 21× 2,

= (99− 4× 21)× 3− 21× 2,

= 99× 3− 21× 14.

Note that there are an infinite number of pairs of coefficients which make the same least linear
combination:

99× (−4) + 21× 19 = −396 + 399 = 3

Using this we can prove the following:
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Lemma 4 If d|ab and (d, a) = 1 then d|b.

Proof: We know there exist integers x and y so that

dx+ ay = (d, a) = 1. (1)

Multiplying both sides of (1) by b we get

bdx+ aby = b

and we note that d|bd and d|ab so that d|b, as required. �

Exercise 4 Find llc(77, 21), llc(8, 38) and llc(30, 48).

2 Primes and Factorisation

We say that a natural number p is prime if it has no positive divisors apart from itself and 1. A
number which is not prime is called composite and 1, which is a special case, is neither; it is a unit.

2.1 Primes

Lemma 5 Every natural number can be written as a product of primes.

Proof: Any prime number can be said to be in this form (a product with one term) and 1 is
often taken to be the product of no terms. If n is composite it must have some non-trivial number
which divides it, and hence some prime p which divides it. We then consider n

p which we can then
check to see whether it is prime or composite and, if necessary, continue this process. �

Lemma 6 If p is a prime and p|ab then p|a or p|b (or p divides both).

Proof: Since p is prime its only positive divisors are 1 and p. Thus (p, a) = 1 or p. In the
former case we apply lemma 4 and in the latter we can easily see that p|a. �

Lemma 7 If p, q1, q2, . . . , qn are primes and p|q1q2 . . . qn then p = qk for some k.

Proof: From lemma 6 we see that p|q1 or p|q2 . . . qn. Since both p and all the qis are prime we
must have p = q1 or p|q2 . . . qn, to which we can repeat the process if n > 2 and otherwise p = q2. �

Theorem 2.1 (The Fundamental Theorem of Arithmetic) Any positive integer can be writ-
ten as a product of powers of distinct primes in a unique way.
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Proof: We saw in lemma 5 that any number has at least one way to express it as a product
of (not necessarily distinct) primes. We shall show that, after collecting the primes together this
representation is the only one possible. Consider

n = t1t2 . . . tr = q1q2 . . . qs (2)

as two different prime representations of the same number. By lemma 7 we see that t1 = qi for
some i and divide both sides of (2) by their common prime. We repeat this r times and thus deduce
that r = s since we cannot run out of tjs before qis, or vice versa, as that would leave a non-empty
product of primes equal to 1. Hence every tj is matched with some qi and the representations differ
only in the order of the primes. �

The most convenient notation for this product representing n is

∞∏
i=1

pi
αi ,

where p1 = 2, p2 = 3, p3 = 5,. . . and αi is the power of the ith prime. The infinite product is
acceptable to represent a finite number since only a finite number of terms in it are non-zero.

Exercise 5 What are the prime power decompositions of 32, 6, 12, 77 and 79 ?

Theorem 2.2 (Euclid) There are an infinite number of primes.

Proof: Suppose the set of primes is finite and is P := {p1, p2, . . . , pr}, say. Consider the
(necessarily finite) number

n = p1p2 · · · pr + 1.

There must be a prime divisor p of n, but we see that if p = pk for some k (1 ≤ k ≤ r) then
p|(n − p1p2 · · · pr) = 1, a clear contradiction since all primes are greater than one. Hence p is a
prime not in Π and so Π is not a finite set. �

2.2 Factorisation

Thus, given any set of primes it is always possible to find a new prime by forming the number n as
in theorem 2.2. However, this number gets large very quickly and is an infeasible way to generate
primes. In fact, if we plug the values into the formula in order starting with 2 we get this list:

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571.

Just verifying that the last number is in fact prime would take a long time (without a computer ;)
so we can chalk this method for generating prime numbers as a non-starter.

A second method, popularly known as the Sieve of Eratosthenes, is slightly more useful, in that
it will give all the primes up to a certain value. We first need to prove the following result:

Lemma 8 If n is composite then it has a prime divisor at most
√
n.

6



Proof: Since n is composite it can be written as n1n2, and one of these two integers is at most√
n (if not n1 >

√
n and n2 >

√
n and so n > (

√
n)2 = n, a contradiction). Say the smaller integer

is n1: if it is prime we are done; if it is composite then it has a prime divisor which is necessarily
less than n1 ≤

√
n. �

We perform the Sieve of Eratosthenes as follows: given the number n we wish to find the primes
up to we find the integer part of

√
n and note it down as N , say. We then write the list of integers

from 2 to n and proceed to cross some of them out according to this pattern:

1. find the first non-circled number in the list, call it a, and circle it,

2. erase all other multiples of a in the list,

3. repeat steps 1 and 2 while a ≤ N .

We shall do a worked example for n = 28. We have N = 5:

2 3 5 7 9 11 13 15 17 19 21 23 25 27
2 3 5 7 11 13 17 19 23 25
2 3 5 7 11 13 17 19 23

and we can stop there since 7 > N . As you can see it works fairly efficiently and, in modified
forms, is still the main way to create large lists of prime numbers. Lemma 8 enables us to stop
early since any numbers left in the list must be prime as otherwise they would have a prime factor
less than

√
n and we have removed all numbers for which this is so. However, it is not necessarily

an efficient way to check whether a particular number is prime, once the numbers involved start to
become large.

The idea behind it can be used to generate sets of prime numbers of a certain size though. If,
for instance, we wish to find the first 10 primes after 300, we can list the numbers from 300 to 330,
say, having first used the sieve as above to generate all primes from 2 to

√
330. We then identify

which numbers in our set are multiples of these primes in turn, and cross them off the list. For
instance, the final prime less than

√
330 is 17, and we evaluate 300

17 on a calculator and note that
it is 17.6470588235294117. . . . Hence the first multiple of 17 after 300 is 18 × 17 = 306, and we
can cross this off the list (although it has already been crossed as it is divisible by both 2 and 3).
We then add 17 to 306 to get 323 and we can cross this off also, and this one hasn’t already been
crossed since 323 = 17× 19, and both are primes.

In practice I just write the odd numbers in the desired range since those ending in even numbers
are obviously seen to be non prime. I then take coloured pencils and cross or circle the numbers
divisible by 3, 5, 7 etc. in different colours, until all numbers are done. Those numbers which are
left are the next primes after the start term, and if there are enough you are done. If there are too
few, it is necessary to add another few numbers on the end and extend your markings from before
to these numbers. Also remember that it is now necessary to check that the square root of the new
largest number does not allow any more possible prime divisors than the previous number.

Other non-technical ways to test for primality include the use of tables (as in Appendix C of
Dudley’s book or the books which have nothing but lists of primes in) and computers (both Maple
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and Matlab have a function called isprime which use probabilistic methods to check primality and
Mathematica has a similar one called PrimeQ). Unfortunately, all are restricted, either by space or
time constraints, to some extent, as there is no easy way to tell if any given number is or is not
prime, as we shall see! Later in the course we shall use some of the techniques learned to enable us
to study some of the better ways to test for primality.

3 Congruences

3.1 Introduction

In this section we shall develop a theory which will enable us to solve problems encountered in
many different parts of the rest of the course. We say that a is congruent to b modulo m (written
a ≡ b mod m) if and only if m|(a − b), and we shall always suppose that m is a positive integer.
a and b can be any integer but it is only important to which positive integer < m it is congruent
modulo m since, for any integer k, km+ a can be regarded as “the same number” as a.

We use the symbol ≡ because congruence is very like equality, except it works with a finite set
of elements (the residues 0, 1, . . . ,m− 1) rather than the integers. It is an equivalence relation like
= and algebra under it obeys most (but not all) of the same properties, the differences we shall
discuss in detail. For example, in solving the equation ax = b in the integers we know there is a
(unique) solution if and only if a|b.

Exercise 6 What are the solutions of 3x ≡ 1 mod 4, 2x ≡ 2 mod 4 and 2x ≡ 1 mod 4 ?
(you can just test the values x = 0, . . . , 3 in the equation).

As you will have hopefully seen from the preceding exercise it is, at first sight, more difficult to
tell whether an equation has solutions, and if so, how many. However, the following theorems will
give us the ammunition to be able to find all the solutions to any linear congruence.

3.2 Solution of congruences

We first show that cancellation of common factors works both in the usual way, and in a more
specialised way too.

Theorem 3.1 If k 6= 0 then ka ≡ kb mod km implies a ≡ b mod m.

Proof: We have k(a− b) ≡ 0 mod km, and hence km|k(a− b). Since k 6= 0, using the result
which says if c 6= 0 then ac|bc⇒ a|b, we know that m|(a− b), as required. �

Theorem 3.2 If (k,m) = 1 then ka ≡ kb mod m if and only if a ≡ b mod m.

Proof: Rearranging the left hand side of the theorem we get

k(a− b) ≡ 0 mod m,

which, by definition, is true if and only if m|k(a− b). But, using lemma 4, (k,m) = 1 implies that
m|(a − b), in other words a ≡ b mod m. The reverse implication is true for all k, whether or not
they are relatively prime to m, since multiplying both sides of an equation by a number doesn’t
change its truth. �
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Theorem 3.3 If d := gcd(a,m)|b then ax ≡ b mod m has d solutions, otherwise it has none.

Proof: Suppose x = x0 is a solution of ax ≡ b mod m so that m|(ax0 − b), which implies
that ax0 = b + km for some integer k. But since d|a and d|m, d|ax0 − km = b. Hence we have
a contradiction if d6 | b so that no such x0 can exist, thus proving the second part of the theorem.
If d > 1 we consider the equation a

dx ≡
b
d mod m

d which is then in the same state as the original
equation if d = 1 since (ad ,

m
d ) = 1 by lemma 1.3.

So, supposing that d = 1, we know there exist integers s and t so that sa + tm = 1 and we
multiply this equation by b and get

a(sb) +m(tb) = b.

This clearly gives us a solution x0 = x ≡ sb mod m and we now have to verify it is the only
one. Suppose there exists y 6≡ x mod m such that ay ≡ b mod m: then, taking the difference,
a(x−y) ≡ 0 mod m and by lemma 4 we have that (x−y) ≡ 0 mod m, contrary to our supposition.
Thus there is exactly one solution if d = 1.

Finally, if d > 1 we can verify that x ≡ x0 + km
d mod m for k = 0, 1, . . . , d−1 are the d solutions

to the equation. �

Thus, using these two theorems we can now solve any linear congruence ax ≡ b mod m as
follows:

1. Determine whether there is any solution to ax ≡ b mod m by finding d := (a,m) and seeing
whether it divides b.

2. If d ≥ 1 then cancel d from all three terms in the congruence so you know there is now just
one solution (under the new modulus).

3. Multiply both sides of the congruence by well chosen numbers which are relatively prime
to m (to avoid introducing spurious solutions) until we have the equation in the form x ≡
x′ mod m′.

Exercise 7 Using the above method, solve (if possible) 5x ≡ 9 mod 10, 3x ≡ 5 mod 7, 4x ≡
1 mod 9, 2x ≡ 37 mod 145, 11x ≡ 17 mod 30, 5x− 3 ≡ 8 mod 10 and 15x ≡ 21 mod 42.

3.3 Linear Diophantine Equations

Diophantine equations are simply equations whose solutions are required to be integral. Such an
equation is linear if all variables aren’t raised to any power. An example of an LDE is 4x+ 5y = 13
which has the unique solution x = 2, y = 1 if we specify x, y ∈ N. Otherwise we can also have
x = −3, y = 5, and an infinite number of others, all necessarily of the form x = 2 + 5k, y = 1− 4k
for integer k. These problems usually arise in simulating real-life situations where, whole numbers
are constrained to appear, such as numbers of pieces of fruit, people or stamps. It can be easily
seen that equations with just two variables as above can be expressed in congruence terms, so we
can derive 5y ≡ y ≡ 13 ≡ 1 mod 4 and do similarly for x and then find the positive solutions by
trial substitution.

We now consider the situation of simultaneous congruences:
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Theorem 3.4 (The Chinese Remainder Theorem)
If m1, . . . ,mk are pair-wise relatively prime positive integers then for each set of ai (1 ≤ i ≤ k)
there is a unique x modulo

∏
mi such that x ≡ ai mod mi.

Proof: If k = 2 then x is a solution if and only if x = a1+m1y ≡ a2 mod m2. This has a unique
solution since it can be rewritten m1y ≡ a2−a1 mod m2 and (m1,m2) = 1, satisfying the conditions
of lemma 3.3. If y ≡ y0 mod m2 is the solution then y = y0+zm2 and so x = (a1+m1y0)+zm1m2,
i.e. x ≡ a1 + m1y0 mod m1m2. The result for k > 2 follows by repeating this process seeing as
each time we produce a smaller set of equations which still has pair-wise relatively prime moduli.
�

For example, to solve the following problem we proceed as follows:
A person goes into a post office with less than four dollars, wanting a set of identical stamps

and no change. On being asked the teller replies, “3c stamps would mean 1c change, 8c stamps 5c
but 17c stamps are fine!” How much money was involved ?

If we set the amount of money to be x cents, the set of congruences involved is x ≡ 1 mod 3,
x ≡ 5 mod 8 and x ≡ 0 mod 17. The latter gives x = 17k which we substitute in the other two
and get 2k ≡ 1 mod 3 and k ≡ 5 mod 8. The second here gives k = 5 + 8l and substituting it into
the first we get 10 + 16l ≡ 1 mod 3 which gives l = 3m. Back-substituting we get k = 5 + 24m and
x = 85 + 408m and so x = 85 cents.

Normally, the best way to attack such problems is the follows:

1. Make sure each equation is of the form given in the Chinese Remainder Theorem, x ≡
ai mod mi, and verify that all the mis are relatively prime.

2. Take the largest two values of mi and express the first as x = ai + kmi, then substitute
this expression for x into the second largest modulus congruence, getting an congruence in
k which can be solved, giving an expression for k of the form k = b + lmj , which can be
substituted into the expression for x to give x = c + lmimj . This expression can then be
substituted into the third largest congruence, and so on, until the final expression is equivalent
to x ≡ y mod m1m2 . . .mk.

Exercise 8 Solve these two sets of congruences:

x ≡ 2 mod 7
x ≡ 1 mod 5
x ≡ 7 mod 8

and

3x ≡ 1 mod 4
5x ≡ 4 mod 7
x ≡ 2 mod 5
2x ≡ 0 mod 3

.

3.4 Inverses in Congruences

In order to solve standard equations in congruence equations it would be nice to be able to just
divide by the number which is the coefficient of the unknown. We cannot divide though, but we can
sometimes multiply by a special number which will give us the number 1. For example, if we have
3x ≡ 4 mod 10 then if we multiply by 7 then we have 21x ≡ 28 mod 10 which can be simplified to
give x ≡ 8 mod 10 which can be verified to be correct. As such, we can say that the inverse of 3
modulo 10 is 7, since 3× 7 ≡ 1 mod 10. Note that this also implies that 7−1 = 3 also, in a similar
way to that in which (23)−1 = 1÷ 2

3 = 3
2 . and 3

2 ×
2
3 = 1.
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However, in congruences, such a number may or may not exist: For instance, we can see that
2x ≡ 3 mod 10 can have no solution by theorem 3.3 since gcd(2, 10) = 26 | 3. Thus 2−1 doesn’t exist
modulo 10, whereas modulo 11 it is 6.

In order to find inverses, it is simply a matter of solving congruence equations as we have done
previously, using the equation

a−1a ≡ 1 mod m

for the inverse of a modulo m

4 Simple Codes

We now use some of the mathematics we have developed so far in a practical application. If it is
wished to keep a message secret it is necessary to store it in some special format that only you and
the intended recipient can understand. The processes for doing this that we shall study are called
encryptions and in encrypting we take the message we wish to send (the plaintext) and convert it
to ciphertext.

The plaintext will be split into blocks, normally of one, two or three letters/characters (the
message will normally be in English and so use the 26 character alphabet, but can also use num-
bers, spaces and other punctuation marks). The alphabets used for both texts, together with the
encryption (and decryption) method, are called a cryptosystem.

4.1 Affine Cryptosystems

For instance, the simplest cryptosystem is the shift transformation in which the same alphabet is
used for both plain and cipher texts and the transformation is just to convert the alphabet to a
number (0 (for “A”) to 25 (for “Z”)) and add some constant to it, modulo 26. A table such as that
in table 1 is often useful as a cross-reference aid.

Table 1: Numerical/Alphabetic Lookup Table

Letter A B C D E F G H I J K L M
Value 0 1 2 3 4 5 6 7 8 9 10 11 12

Letter N O P Q R S T U V W X Y Z
Value 13 14 15 16 17 18 19 20 21 22 23 24 25

The easiest constant to add is 13 since then the same function (f(x) ≡ x+ 13 mod 26) can be
used to both encrypt and decrypt messages; this is known as rot13.

Exercise 9 Decode this word, given that it is in rot13: mvzonojr

In general an affine transformation of a plaintext message P is defined by

C ≡ aP + b mod N,

where, in order for the encryption to be unique, we need (a,N) = 1. From our earlier work we
can see that the decryption formula for P is P ≡ a−1(C− b) mod N , where a−1 is the inverse of a
modulo N
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Exercise 10 Generalising the idea of a reversible code, as in rot13, which values for a and b give
us exactly the same equations for encoding and decoding ?

If the only information that we know is that the cryptosystem is an affine transformation and
we have a large sample of encrypted plaintext then to determine the parameters a and b (and hence
the decryption formula) we study the sample texts and perform frequency analysis upon it, using
tables compiled by other cryptographers.

For instance, in standard English the most common letters in people’s vocabularies are usually
“E” and then “T”, with “ ” (the space character) being even more common if it is included in the
alphabet. We then identify the most common characters in our ciphertext and, in order to try to
identify the values of a and b, we assume that some pair of these is “E” and “ ”, in some order. With
this assumption we should be able to find a and b, and we can then check that the other common
letters are also sensible (so that “Q” is the third most common letter, for instance). Alternatively,
we can start to decode our text, and if it doesn’t make sense we know we have incorrect values
for a and b. We then repeat the procedure, supposing a different pair of common letters in our
ciphertext is “E” and “ ”, until either we decode the text, or are exhausted! In the latter case it is
then sensible to look at the structure of the message, and use our knowledge of English to see that
any one letter words are probably “A” or “I”, common sequences are maybe “THE” or repeating
letters are not “H” or “K”, etc. As you can probably tell, frequency analysis is a bit of an art which
can take some practice to become good at.

Exercise 11 Take a page of a book or a magazine in another language (Shona, Ndebele, French)
and see which are the 5 most common letters in that passage.

Exercise 12 Supposing we are using the 27 character alphabet (space included, with value 26) and
from previous messages we see that the most common characters used are d and then b. Assuming
the frequency distribution is standard, to what does ytbdwkydwqmbb decrypt ?

4.2 Digraph and Matrix Cryptosystems

In order to make things a little harder for anyone wishing to decipher our codes against our wishes
(even the affine transform has only about 700 different possibilities and so it is quite easy to find
the possible plaintexts just by unleashing a computer upon it), we complicate our encoding process
by taking larger subsets of our plaintext message. For instance, by adding an extra space (or other
junk letter) at the end of the plaintext if necessary we can then split it into sets of two letters
(digraphs). We encode by multiplying the first character’s reference number by n (the number of
letters in the alphabet) and adding the second number, we get a unique number between zero and
n2 − 1 for every different digraph. We then work modulo n2 and hence there are a much larger
number of possible values for the parameters of affine transformations.

For instance the word “CHELSEA!” would be split into four digraphs, “CH”, “EL”, “SE” and
“A!”, where, if we are using an n letter alphabet, the first digraph has value 2n + 7, the second
4n + 11, etc. Decoding a word encoded using digraphs is simply a matter of identifying which
number has which quotient and remainder on division by n, as in theorem 1.1. For instance, if
n = 27, the number 113 can be written as 27× 4 + 5, so the two letters in the digraph have values
4 and 8, and so the digraph corresponding to 112 in the standard 26-letter alphabet is (by table 1)
“EF”.
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Digraph encoding also requires a much larger database of previous transmissions since the
frequency distribution of the digraphs will be much less pronounced than for single characters.
However, it has been shown that in the 26 letter English alphabet the most common digraphs are
usually “TH” and “HE”, and with 27 characters they are “E ”, “S ” and “ T”, in that order.

Exercise 13 If we are again using the 27 character alphabet and the two most common digraphs in
the previous ciphertexts are fb and ab, try to determine the parameters of the affine transformations
used to decode. You should find that there are 27 different possibilities for them. Rather than trying
all these possibilities, you are given the extra information that “AC” codes to hh - to what does the
message tnwf decode ?

I assume you are all familiar with standard matrix operations? Digraphs can alternatively be
represented as column vectors in an N dimensional space and we can then use matrix transfor-
mations to rearrange the points in this space as an encoding action. As with the real numbers it

can be proved that the inverse of a matrix

(
a b
c d

)
modulo N exists if t :≡ ad − bc mod N and

(t,N) = 1 and is

t−1
(

d −c
−b a

)
=

(
t−1d −t−1c
−t−1b t−1a

)
.

Exercise 14 What is the inverse of

(
5 2
1 1

)
modulo 7 ? Check your answer.

We represent a message consisting of k digraphs as a 2 × k matrix in which the kth column
represents the kth digraph. This can then be multiplied by the transforming matrix to give us
another 2× k matrix which represents the coded message.

For example, the message “buy now!” can be represented in a 28 character alphabet and, split

into digraphs, gives the 2× 4 matrix

(
1 24 13 22

20 26 14 27

)
, which, when multiplied by

(
5 1
1 6

)
we

get y :=

(
25 6 23 25
9 12 13 16

)
, which is equivalent to the message zjgmxnzq. Obviously, to decode

this, we just multiply y by A−1 = 1−1
(

6 −1
−1 5

)
(since t = 6× 5− 1× 1 = 29 ≡ 1 mod 28) and

reconvert to our alphabet.

Exercise 15 Code a six-letter word using the method above, with the transformation matrix below
and the 26 letter alphabet. Swap your ciphertext with your neighbour and try to decode correctly
before them! (

14 3
7 11

)
4.3 Further Extensions

We have now seen the major types of simple codes we can use, but there are many improvements
to the techniques in order to complicate matters even further, but at the expense of making the
encoding more difficult.
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• Shift Words: We can, in addition to using an affine transformation, also add a code word,
repeated over and over, so that adjacent letters are not shifted using the same formula. The
original cryptosystem based upon this idea is the wordshift transform, where one simply
chooses a word, “dog”, for example, then takes the value of each of the letters in the word (3,
14 and 6 in our case) and forms the following sum:

m y d o g i s b l u e
12 24 3 14 6 8 18 1 11 20 4

+ d o g d o g d o g d o
3 14 6 3 14 6 3 14 6 3 14

= p m j r u o v p r x s
15 12 9 17 20 14 21 15 17 23 18

This example involved just the shift transformation, but one can, with just a little bit more
work, use the affine, or even digraph transformations, using the same rule

C ≡ aP + § mod N. (3)

In order to decode such equations, if we know the values of a and S, we simplify solve equation
3 to get P ≡ a−1(C− §) mod N . However, if the parameters are unknown, we have a harder
task. We have to first guess the length l of the shift word, and then break our ciphertext
up into l groups of letters, group Gi consisting of the letters in positions i, l + i, 2l + i,. . . .
We then perform frequency analysis separately on each of these groups, in order to find what
the ith letter of the shift word was. Since we are unable to check whether words are formed
without solving for all l groups we have to use the technique of checking whether the most
common letters in any particular Gi make sense, before trying to put all l solutions together.
Obviously there is a lot more work involved, and a larger margin for error in cracking the
code, especially given that, if the length of the shift word is guessed incorrectly, the process
can continue indefinitely.

• Tri- and Quad- graphs: There is no special reason to just consider digraphs, we can just as
easily break our text up into groups of 3 or 4 letters, and then find the value of these trigraphs
in just the same way. This way frequency analysis becomes almost useless since now very
few groups of letters will appear more than once, even in a whole document. However, the
trade-off is that enciphering the code will require a lot of work, since we will now be working
with moduli in the ranges of 10 000 to 500 000! To even find the inverse of some number
working in such a modulus is time-consuming.

5 Number-Theoretic Functions

We now study several functions which are defined just for the integers and see how they are used
in many results. We say that a function is multiplicative if it is true that f(mn) = f(m)f(n) if
(m,n) = 1.

5.1 The divisors of an integer

We define τ(n) as the number of positive divisors of an integer n (including 1 and n) and σ(n)
as the sum of these same positive divisors. Thus, for example, the set of divisors for n = 10 is
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{1, 2, 5, 10} and so τ(10) = 4 and σ(10) = 1 + 2 + 5 + 10 = 18. Mathematically we usually write

τ(n) :=
∑
d|n

1 and σ(n) :=
∑
d|n

n.

We can first notice that τ(p) = 2 and σ(p) = p + 1 for any prime p, since, by definition, p has
no other divisors apart from itself and 1.

Exercise 16 What are τ(n) and σ(n) for n = pq (p and q both primes), n = p2, n = pk ?

Using the final result of exercise 16 we can now actually calculate the values of τ(n) and σ(n)
for any n as shown in the following theorems by proving both functions to be multiplicative.

Theorem 5.1 If n =
∏∞
i=1 pi

αi then

τ(n) =
∞∏
i=1

τ(pi
αi) =

∞∏
i=1

(αi + 1)

and

σ(n) =
∞∏
i=1

σ(pi
αi) =

∞∏
i=1

(1 + pi + · · ·+ pi
αi) =

∞∏
i=1

pi
αi+1 − 1

pi − 1

Proof: We consider the numbers of the form
∏∞
i=1 pi

βi where 0 ≤ βi ≤ αi and aim to prove
that these are exactly the divisors of n. Any of these numbers is a divisor, since, when multiplied
by
∏∞
i=1 pi

αi−βi (which is an integer too), we get n.
By theorem 2.1 we have that every number is representable in prime power form and so we need

only consider as possible divisors those integers with βi > αi. But any integer with a βi satisfying
that cannot be a divisor since then it has more pis in its decomposition than n.

Thus we just need to count and to add the numbers of the given form to find τ(n) and σ(n)
respectively. The formulae given are surely true for n a power of a prime, so we use induction on
the number of prime factors in n. Consider the case when n has k + 1 different prime divisors and
suppose the induction hypothesis is true for less than this number, Choose one prime p which is to
the power γ in n: the divisors of n can be split into γ + 1 groups, according to what power of p
(from 0 to γ) divides them. Each of these groups has τ( npγ ) members by the induction hypothesis
and thus we can see that τ(n) = (1 + γ)τ( npγ ) and hence that part of our result is proven.

Similarly, each group has sum pβσ( npγ ), for some integer β, and so the total sum is (1+p+ · · ·+
pγ)σ( npγ ) = σ(pγ)σ( npγ ). �

5.2 Perfect Numbers

We say that a number n is perfect if σ(n) = 2n, or, equivalently, if the sum of its proper divisors
(those other than n) is n itself. For instance, n = 6 satisfies this relation (6 = 1 + 2 + 3) and is the
smallest perfect number, and it is clear that since 2p > p + 1 for all primes p no perfect number
can be prime.

Exercise 17 Find the next smallest perfect number by trial and error and then, by comparing the
prime factorisations of these numbers predict the next, which is less than 500.
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Theorem 5.2 (Euclid) If n = 2k − 1 is prime, then m := 2k−1(2k − 1) is perfect.

Proof: Since n = 2k − 1 is prime we have, by theorem 5.1 and since n and 2k−1 are relatively
prime, �

σ(m) = σ(2k−1)σ(2k − 1) = (2k−1+1 − 1)(1 + (2k − 1)) = (2k − 1)(2× 2k−1) = 2m.

Exercise 18 What are the divisors of 198 ? What, therefore, are τ(198) and σ(198).

Listing the divisors of a number n in increasing order we notice that they “pair up” from either
end, each pair multiplying to n. However, there is one exception in which there is an odd number
of divisors:

Lemma 9 τ(n) is odd if and only if n is a square number.

Proof: We give two proofs, to show that there is more than one way to skin a cat:

1. By the observation above we note that the number which won’t pair up will be
√
n since if

d|n then also n
d |n, and these two numbers are distinct if n

d 6= d, i.e. n 6= d2.

2. By theorem 5.1 we see that τ(n) =
∏∞
i=1(1 +αi) and so τ(n) is odd if and only αi is even for

all i. This is equivalent to n being a square.

�

Exercise 19 For which n is σ(n) odd ?

5.3 Euler’s totient function

We now consider a slightly more complex number theoretic function: we define φ(n) as the number
of integers less than n which are relatively prime to n. We note for primes p that φ(p) = p−1 since
every integer n < p satisfies (n, p) = 1.

Exercise 20 By considering cases find a formula for φ(p2). How about φ(p3) ?
[Hint: it may be easier to consider those numbers which aren’t relatively prime to a number. This
is n− φ(n).]

Theorem 5.3 φ(pl) = pl−1(p− 1).

Proof: Those integers which aren’t relatively prime to pl, and hence p, are numbers of the
form kp, where 1 ≤ k ≤ pl−1. There are therefore pl−1 of these and so φ(pl) = pl − pl−1. �

We, of course, now wish to find a formula for φ(n) in general and, it turns out that φ is a
multiplicative function as we would have hoped:
Suppose (m,n) = 1. The number φ(m)φ(n) is the number of pairs of integers (i, j) such that
(i,m) = 1 and (j, n) = 1. By theorem 3.4 (the Chinese remainder theorem) we know that there is
a unique solution x modulo mn to x ≡ i mod m and x ≡ j mod n for each pair of i and j and so
it remains to show that this x is relatively prime to mn and every such residue modulo mn can be
generated in this way so that φ(mn) = φ(m)φ(n) as required.
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“⇒” Suppose (i,m) = (j, n) = 1 but p|(x,mn) so that p|m or p|n by lemma 6. If p|m then p|x
also and so, since i = km − x for some integer k, p|i, contravening (i,m) = 1. But then p|n
and we can deduce p|ln− x = j, another contradiction. Thus (x,mn) = 1.

“⇐” Suppose (x,mn) = 1. If there exists a p|(i,m) then, as before, p|km − i = x and p|mn
implying p|1, a contradiction, and similarly we can prove (j, n) = 1.

Thus there is a one-to-one correspondence between the residues x and the pairs (i, j) and so
φ(mn) = φ(m)φ(n).

We can thus compute the value of φ(n) for any integer n by finding the prime factorisation of
n and multiplying the invidual terms, or we can also see that

φ(n) = n×
∞∏
i=1

(
pi − 1

pi

)
.

6 Higher Power Congruences

6.1 More complicated congruences

Since ≡ is working just like = we define powers of the residues in exactly the same way - a0 = 1
and an = aan−1 if n ≥ 1. The various familiar rules still work (aman = am+n and (am)n = amn)
and so we shall explore this relation for small integers to see how it works. Firstly, in order
to find an mod m for some large n it is not necessary to first evaluate the large integer an and
then calculate its remainder on division by m - we just repeatedly square or cube, recording our
intermediate results and then multiply these values together. For instance, to solve x ≡ 35 mod 7
we first note that 32 ≡ 2 mod 7 and so 34 ≡ 22 = 4 mod 7. Finally, 35 = 343 ≡ 4× 3 ≡ 5 mod 7.

Exercise 21 Find the values of 27 mod 5 and 63 mod 11.

Table 2: Powers of the residues modulo 5

a a2 a3 a4 a5

0 0 0 0 0
1 1 1 1 1
2 4 3 1 2
3 4 2 1 3
4 1 4 1 4

We can make tables of powers too as in table 2. What do you notice about it ?
Construct a table of powers for moduli 3 and 7. What about 4 or other composite numbers ?

What you may have noticed is the result known as Fermat’s Theorem. This isn’t the famous
“last” one, the one that has only just been proved, but this is much more useful anyway and it
goes as follows: If p is prime and (a, p) = 1 then

ap−1 ≡ 1 mod p. (4)
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We can remove the gcd condition and make it true for all a if we restate it, as: if p is prime, then

ap ≡ a mod p

since if (a, p) = 1 it is valid to multiply both sides of the congruence by a and if (a, p) = p (so
a = kp for some integer k) then 0 ≡ 0 mod p.

Lemma 10 If (a,m) = 1 then the least residues of

L1 := a, 2a, 3a, . . . , (m− 1)a mod m

are
L2 := 1, 2, 3, . . . , (m− 1) mod m

in some order.

Proof: No number in L1 is congruent to 0 mod m since (a,m) = 1. Thus we just need to
show that no residue appears twice in L1: suppose this is the case and we have ra ≡ sa mod m.
But then we can again cancel a from both sides to get r ≡ s mod m, a contradiction of the choice
of r and s as different residues. �

Theorem 6.1 (Fermat’s Theorem) If (a, p) = 1 and p is prime then ap−1 ≡ 1 mod p.

Proof: We consider L1 from lemma 10 again. We showed it was the rearrangement of L2 so
we consider both of the products when all the terms in each list are multiplied together. Because
they are intrinsically the same set we must have that

a× 2a× 3a× · · · × (p− 1)a ≡ 1× 2× 3 · · · × (p− 1) mod p.

Cancelling the common factors of 2, 3, . . . , p − 1, all of which are relatively prime to p (since p is
prime), we get the required result. �

We can use a similar technique to prove another famous result in congruence arithmetic, but
this time involving factorials. Investigate them yourself if you like, but for our proof we shall first
need a lemma.

Lemma 11 If p is an odd prime then x2 ≡ 1 mod p has exactly two solutions.

Proof: Let r be any solution. Thus p|(r2 − 1) = (r − 1)(r + 1). By lemma 6 we have from
this that p|(r − 1) or p|(r + 1), which can be stated as r ≡ 1 mod p or r ≡ p− 1 mod p, and both
of these can be easily seen to be the solutions r ≡ ±1 mod p. We note that if p 6= 2 then these two
solutions are different, since 1 < p− 1 in this case. �

Exercise 22 Find a composite number n which doesn’t have exactly two solutions to x2 ≡ 1 mod n.
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We now consider the notion of inverses of the residues, restricting ourselves to prime modulus
- the inverse is the residue a−1 so that aa−1 ≡ 1 mod p. If a ≡ 0 mod p then there is obviously no
solution to aa−1 ≡ 1 mod p. From lemma 11, we see that if and only if a ≡ 1 or p− 1 mod p then
a is its own inverse. Otherwise we shall prove that the remaining residues “pair up” in that all the
inverses are distinct and the inverse of the inverse of a is a itself. First suppose a−1 ≡ b′ mod p:
then b ≡ aa−1b ≡ ab′b ≡ a mod p and so the inverses are distinct and also every residue has a
unique inverse.

Theorem 6.2 (Wilson’s Theorem) If p is prime then (p− 1)! ≡ p− 1 ≡ −1 mod p.

Proof: From the above observations we see that when we take the product of 1, 2, 3, . . . and
(p − 1) mod m the first and last terms we leave alone but the remaining p − 3 terms consist of
p−3
2 pairs of residues and their inverses, which when multiplied obviously give 1. Thus (p − 1)! =

1× 2× 3× · · · × (p− 1) ≡ p− 1 ≡ −1 mod m. �

Referring back to equation 4 we now extend it to be valid for all the integers. Noting that in
that equation the exponent was p − 1 = φ(p) and after experimenting with the non-prime moduli
one would notice that the smallest number for which ak ≡ 1 mod m is k = φ(m). This we now
prove.

Theorem 6.3 If (a,m) = 1 then aφ(m) ≡ 1 mod m

Proof: By lemma 3.3 we know that ax ≡ 1 mod m has a solution if and only if (a,m) = 1,
and thus the number of residues modulo m which have inverses is the same as the number which are
relatively prime, φ(m). We call the set of inverses S. For some a such that (a,m) = 1 we consider
the set of residues Sa := {aai}, where each ai is an invertible residue modulo m. No element of
Sa is repeated since aai ≡ aaj mod m ⇐⇒ ai ≡ aj mod m and all elements of Sa are in S since
(aai)

−1 = (ai)
−1a−1. Taking the product of both S and Sa we get the same result and since they

each have φ(m) elements we have∏n
i=1 aai −

∏n
i=1 ai ≡ 0 mod m

(aφ(m) − 1)
∏n
i=1 ai ≡ 0 mod m. (5)

Since each ai is invertible we can multiply equation (5) by each of their inverses and so we get
aφ(m) ≡ 1 mod m as required. �

Corollary 1 If (a,m) = 1 and k ≡ n mod φ(m) then an ≡ ak mod m.

Proof: By theorem 6.3 we have that, for any integer j,

(aφ(m))j ≡ 1j ≡ 1 mod m

and so, since n = k + jφ(m) we have the stated result. �

Exercise 23 Solve x ≡ 2777 mod 75 using the corollary.
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Exercise 24 Evaluate
∑

d|n φ(d) for n = 3, 6, 7, 18, 21 and n = p, a prime.

Theorem 6.4 If n ≥ 1 then
∑

d|n φ(d) = n.

Proof: We shall use a method first devised by Gauss. Group the integers 1, . . . , n depending
upon their gcd with n, thus for n = 12 we get the following:

C1 = {1, 5, 7, 11}, C4 = {4, 8},
C2 = {2, 10}, C6 = {6},
C3 = {3, 9}, C12 = {12}.

Clearly all n integers are in exactly one of these classes. But (m,n) = d if and only if (m/d, n/d) = 1
and so m ∈ Cd ⇐⇒ (m/d, n/d) = 1. Thus the number of elements in Cd is φ(n/d). Hence the
total number of elements in all the classes is n =

∑
d|n φ(n/d). But

∑
d|n φ(n/d) is the same number

as
∑

d|n φ(d) since, for each d|n there exists an integer e := n/d|n also, and hence all divisors are
counted in both sums. Hence n =

∑
d|n φ(d) as required. �

6.2 Completing the Square

We now study how to solve more complicated algebraic congruence equations - for instance, we
have seen in lemma 11 that, modulo p, that quadratic equation has two solutions. But how about
x2 ≡ 2 mod 5 and x2 ≡ 2 mod 7 ?

For small values of the modulus we can just try all the different values of x and see which, if
any, work. However, this isn’t practical for larger moduli, so we need a new scheme:

We initially start with just prime moduli, and work up to general solution: Suppose that the
equation we are considering is

ax2 + bx+ c ≡ 0 mod m. (6)

m = 2: 2 is a prime, and, although not odd, it certainly behaves in an odd way! To solve any
congruence modulo 2 it suffices to substitute the values zero and one in the equation, or note
that no units term implies that 0 is a solution and an even number of terms implies that 1
is. Thus x2 + x+ 1 ≡ 0 mod 2, for instance, has no solution.

m = p an odd prime: Multiplying equation (6) by 4a (which is not congruent to zero modulo p,
since neither 2 nor a was) we get

(2ax)2 + 4abx+ 4ac ≡ (2ax+ b)2 − b2 + 4ac ≡ 0 mod p.

This equation has a solution if and only if z2 ≡ b2−4ac mod p has a solution, i.e. d := b2−4ac
is a square number. Thus our situation is exactly analogous to solution of real quadratic
equations in that we need to verify whether d exists and then the roots of the equation are

−b±
√
b2 − 4ac

2a.

Exercise 25 What are the solutions of 2x2 − 2x+ 3 ≡ 0 mod 7 ?
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all other m: We break down m into its prime factors and then solve an equation for each of these
until we have a solution, in much the same way as the Chinese remainder theorem. We shall
show how to do this with an example, firstly with m = pα:

x2 + 2x+ 6 ≡ 0 mod 49

We know that if this holds then certainly x2 + 2x + 6 ≡ 0 mod 7 and so we first find the
solutions of this:

x2 + 2x+ 6 ≡ 0 mod 7

⇒ (x+ 1)2 + 5 ≡ 0 mod 7

⇒ (x+ 1)2 ≡ 2 mod 7

⇒ x+ 1 ≡ 3, 4 mod 7

⇒ x ≡ 2, 3 mod 7.

We can verify that this is correct by verifying that 4 + 4 + 6 = 14 and 9 + 6 + 6 = 21, both
divisible by 7. Thus we can write x = 2+7y or 3+7y and substitute into the original equation
to get, respectively,

(2 + 7y)2 + 2(2 + 7y) + 6 ≡ 49y2 + 42y + 14 ≡ 0 mod 49

and
(3 + 7y)2 + 2(3 + 7y) + 6 ≡ 49y2 + 56y + 21 ≡ 0 mod 49.

These can both be simplified to linear congruences 6y + 2 ≡ 0 mod 7 and y + 3 ≡ 0 mod 7
(since we have an equation of the form 7a ≡ 7b mod 7c, and we know we can cancel the 7s by
lemma 3.1 (this will, amazingly, always be the case with powers of primes). Thus we get the
solutions y ≡ 2 mod 7 and y ≡ 4 mod 7, which can then be resubstituted to give the required
values for x ≡ 16, 31 mod 49.

If m is not a power of a prime then we just have to break the working down into the prime
powers which constitute m and then put them together using the Chinese remainder theorem
as below:

If the equation is x2 + 2x + 6 ≡ 0 mod 147 then we know that we must have x2 + 2x + 6 ≡
0 mod 49 (which has the solution worked out above) as well as x2 + 2x+ 6 ≡ 0 mod 3, which
can be easily seen to have solutions x ≡ 0, 1 mod 3, and so the solution to the whole is
x ≡ 16, 31, 114, 129 mod 147.

Exercise 26 Find the solutions of 7x2 − 13x+ 31 ≡ 0 mod 75.

6.3 Indices and Primitive Roots

The method outlined above will work for any quadratic, cubic,. . . and so the only problem left for
us to solve is whether any particular integer is a root of xk ≡ a mod p for any prime p. To do this
we shall use a counterpart to logarithms in modular arithmetic: The question to ask when forming
a table of indk n is “What power of k is equal to n?”
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Table 3: Power and Index table for 11

n 0 1 2 3 4 5 6 7 8 9 10

2n 1 2 4 8 5 10 9 7 3 6 1
3n 1 3 9 5 4 1 3 9 5 4 1

ind2 n 0 1 8 2 4 9 7 3 6 5

Primitive Roots

As we can see in table 3, if a 6≡ 0 mod 11 then there exists some residue r modulo 10 so that
a ≡ 2r mod 11. We say that the index (base b) indb a is the residue r modulo p − 1 such that
a ≡ br mod p. We note, also from table 3, that 3 cannot be used as an index as, for instance,
7 6≡ 3k mod 11 for any integer k. If b is such that all invertible residues have representations of
the form bk then we say that b is a primitive root. The order of b modulo p is the smallest positive
integer k such that bk ≡ 1 mod p. Thus b is primitive if it has order φ(m).

Lemma 12 If (a,m) = 1 and a has order t mod m then t|φ(m).

Proof: By theorem 1.1 we can write φ(m) = qt + r, with 0 ≤ r < t and lemma 6.3 tells us
that

1 ≡ aφ(m) ≡ aqtar ≡ ar mod m.

But since t is the smallest positive integer satisfying at ≡ 1 mod m we must have r = 0, which
implies our result. �

Corollary 2 If p and q are odd primes and q|(ap − 1) then either q|a− 1 or q = 2kp+ 1 for some
integer k. In particular, any divisor of 2p − 1 is of the form 2kp+ 1.

Proof: We have ap ≡ 1 mod q and so the order of a divides p and so is either 1 or p. In the
former case we have a1 ≡ 1 mod q and so q|a−1, and in the latter p|φ(q) = q−1 so that q = 1+pr.
Since q and p are odd r must be even and so q = 2kp + 1. If a = 2 then the former case cannot
occur since q > 1. �

Exercise 27 Factorise 47 − 1. Prove that 213 − 1 is prime.

We know that bφ(m) ≡ 1 mod m by theorem 4, so in order to check whether b is a primitive
root we simply need, by lemma 12, to evaluate bd for all divisors d of φ(m): if bd 6≡ 1 mod m for
every d < φ(m)− 1 then b must be primitive. If (a,m) 6= 1 then a cannot be a primitive root since
no positive power of a can be congruent to 1 modulo m.

Exercise 28 What are the primitive roots of 8,10,17 ?
[Hint: use the repeated squaring method, reducing modulo 17 each time, and use any repeating
patterns you notice]
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It can be proved that the only numbers which have primitive roots are those of the form pk or
2pk, where p is an odd prime, in addition to 2 and 4. Also, p has φ(p − 1) primitive roots, but
the actual distribution of them is hard to predict; For most primes, one or both of 2 and 3 are
primitive roots and so one need only check a couple of powers in practice. But for 71, 7 is the
smallest primitive root, for example.

Practical Application

To actually use the tables of indices such as table 3 we proceed as for logarithms as follows:

1. to solve 4x + 3 ≡ 2 mod 11 we subtract 3 from both sides and take indices, so that from
4x ≡ −1 mod 11 we get ind 4 + ind x ≡ ind 10 mod 10, i.e. ind x ≡ 5 − 2 ≡ 3 mod 10,
and so x ≡ 8 mod 11. We can check that indeed 4× 8 + 3 = 35 ≡ 2 mod 11.

2. to solve x2 + 3x ≡ 9 mod 11 we complete the square as before, getting (x− 4)2 ≡ 3 mod 11,
and then take indices of both sides so we have 2 ind (x − 4) ≡ 2w ≡ ind 3 ≡ 8 mod 10, We
solve this to get w ≡ 4 mod 5 ≡ 4, 9 mod 10 which corresponds to x − 4 ≡ 5, 6 mod 11 and
so x ≡ 9, 10 mod 11.

This method takes the guesswork out of solving congruences, but the work involved is usually
greater unless one has a lot of congruences in one modulus to work out. Once you are practiced at
solving by the method described earlier this way becomes only useful for solving equations of the
form 5x ≡ 9 mod 11 or x5 ≡ 3 mod 11. The former translates to solving 4x ≡ 6 mod 10, which has
solution x ≡ 4 mod 5.

7 Quadratic Residues

We still have the problem of determining whether or not there exists a solution to a congruence of
the form

x2 ≡ a mod m. (7)

7.1 Euler’s Criterion

If (a,m) = 1 and m = p, an odd prime, then one way to determine whether (7) has a solution is
by using Euler’s criterion which is the following:

a
p−1
2 ≡

{
1 if there is a solution
−1 if there is no solution

mod p

This result we shall verify in the problem classes, by using primitive roots. But we now move
on and do a worked example of the criterion: does x2 ≡ 8 mod 23 have a solution ?
we calculate 811 mod 23, and obviously use the repeated squaring method. 82 = 64 ≡ −5, 84 ≡
(−5)2 ≡ 2, 88 ≡ 4 and so 811 ≡ 8× (−5)× 4 ≡ 8× 3 ≡ 1. Thus 811 ≡ 1 mod 23 and so there is a
solution. But note that we get no clues to what the solution is, despite the work done. One way
to do this, slightly more sophisticated than just trying all possible answers in the equation, is to
proceed like this:

8 = 22 × 2 ≡ 22 × 25 = 22 × 52 ≡ 102.
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So the solution here came out easily to be ±10, so x ≡ 10, 13 mod 23. However it is not always
this easy:

Exercise 29 Show that x2 ≡ 41 mod 61 has a solution using Euler’s criterion and then find it
using the method demonstrated above.

7.2 The Legendre Symbol

We now incorporate some new definitions which will enable us to determine whether or not equation
7 has a solution in the case m = p. We say that a is a quadratic residue if there is a solution and a
quadratic non-residue if not. We define the Legendre symbol as follows:(

a

p

)
:=

{
1 if a is a quadratic residue of p
−1 if a is a quadratic non residue of p

Note that the bottom number in the Legendre symbol has to be an odd prime and not a

divisor of the top number so that neither

(
2

9

)
nor

(
6

3

)
is defined. From before we see that(

8

23

)
= 1 and

(
41

61

)
= 1 and note that this also implies that, say,

(
31

23

)
= 1 too, since

x2 ≡ 8 ≡ 31 mod 23 has a solution. This observation is the basis for one of the three basic rules
for evaluating Legendre symbols.

Theorem 7.1 The Legendre symbol has the following properties:

1. If a ≡ b mod p then

(
a

p

)
=

(
b

p

)
.

2. If p6 | a then

(
a2

p

)
= 1.

3. If p6 | a and p6 | b then

(
ab

p

)
=

(
a

p

)(
b

p

)
.

Proof:

1. The solution (if it exists) of x2 ≡ a mod p is necessarily the same as that of x2 ≡ b mod p

and so

(
a

p

)
=

(
b

p

)
.

2. There always exists a solution of x2 ≡ a2 mod p, namely x ≡ a,−a mod p.

3. We use Euler’s criterion to prove this:
since we note that (

a

p

)
≡ a

p−1
2 mod p (8)

we have (
ab

p

)
≡ ab

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
mod p.

But since both sides of this congruence can be only 1 or -1 we can replace the ≡ by = and
thus we have the result.
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Exercise 30 Find

(
19

5

)
and

(
−9

13

)
using theorem 7.1

The final rules we need in order to work with Legendre symbols are the following:

Theorem 7.2 (The Quadratic Reciprocity Law) If p and q are odd primes and p ≡ q ≡

3 mod 4 then

(
p

q

)
= −

(
q

p

)
, otherwise

(
p

q

)
=

(
q

p

)
.

There are many proofs of these but most are quite complicated. If you are interested, please
consult any number theory textbook.

Lemma 13(
1

p

)
= 1,

(
−1

p

)
=

{
1 if p ≡ 1 mod 4
−1 if p ≡ 3 mod 4

and

(
2

p

)
=

{
1 if p ≡ 1, 7 mod 8
−1 if p ≡ 3, 5 mod 8

Proof:

• We have seen in lemma 11 that x2 ≡ 1 mod p always has the solutions x ≡ 1, p− 1 mod p so
the first statement is true.

• Using Euler’s criterion and by equation (8) we have

(
−1

p

)
≡ (−1)

p−1
2 mod p, which is

easily seen to be equal to 1 or -1 depending upon the value of p as stated.

• Finally, we consider the sequence of even residues modulo p, {2, 4, . . . , p − 3, p − 1} =

{2, 4, . . . − 3,−1}. Taking the product of the first representation we get 2
p−1
2 (p−12 )!, and

the second we have, taking terms alternately from both ends of the sequence starting at the

right, (−1)1+2+3+ p−1
2 (p−12 )! = (−1)

p2−1
8 (p−12 )!. Cancelling the factorial these two equivalent

expressions have in common we get 2
p−1
2 ≡ (−1)

p2−1
8 mod p and the result follows by equation

(8) again.

�

For example, to calculate

(
263

631

)
we can proceed as follows, after verifying that 631 is indeed

prime: (
261

631

)
=

(
32 × 29

631

)
=

(
32

631

)(
29

631

)
=

(
29

631

)
=

(
631

29

)
=

(
22

29

)
=

(
2

29

)(
11

29

)
= −

(
11

29

)
= −

(
29

11

)
= −

(
7

11

)
=

(
11

7

)
=

(
4

7

)
=

(
22

7

)
= 1.
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Thus there are solutions to x2 ≡ 261 mod 631 and they are, in fact, x ≡ 92, 539 mod 631, but
I used a computer to find that out!

Exercise 31 Evaluate

(
14

17

)
and

(
667

421

)
.

8 Arithmetic in Other Number Bases

We briefly divert to investigate what happens if we try to use other base systems than decimal
in order to do our work. A base system is when, instead of representing a number as n3n2n1 =
n3×100+n2×10+n1, we use a base b not equal to 10. So the number which is 35 in decimal is 43 in
octal (base 8), since 35 = 4× 8 + 3. For bases greater than 10 we have to introduce letters to stand
for the numbers 10, 11,. . . . The most common base systems are bases 2, 8, 12 and 16, and in the
latter two we use δ (called “dec”) and ε (called “el”) for 10 and 11 in base 12 (dozenal/duodecimal),
and A, B, . . . , F for 10 through to 15 in base 16 (hexadecimal).

In order to add, multiply and divide we can use the familiar carry rules from ordinary arithmetic,
but we must be careful not to get confused. To start with it is probably necessary to convert each
small multiplication into decimal then convert back, but with practice one can easily learn a δ times
table, which makes life much easier.

Exercise 32 What is 17+66 in base 8 ? 4F × 16 in base 16 ? 56÷ 3 in base 12 ?

8.1 Divisibility Testing

We are all familiar with the rules in base 10 for seeing whether a number is divisible by 2, 5 or 10
(testing whether the final digit is divisible by that number), and there is also an easy way to test
for divisibility by 3 and 9:

Theorem 8.1 If a number is written nknk−1 . . . n2n1n0 in base 10 then it is divisible by d = 3 or
9 if

∑k
i=0 ni ≡ 0 mod d. It is divisible by 11 if

∑k
i=0(−1)ini ≡ 0 mod 11.

Proof: Suppose we write our number in base d for one of the three divisors d.

10knk + 10k−1nk−1 + . . .+ 10n1 + n0 (9)

Since 10 ≡ 1 mod 3 and 10 ≡ 1 mod 9 we have that 10i ≡ 1 mod 3 and so equation (9) just becomes∑k
i=0 ni in either modulus as required. Similarly 10 ≡ −1 mod 11 and so we get the co-factors as

shown in the statement of the theorem. If and only if our number is divisible by the modulus then
equation (9) is congruent to 0. �

As you will appreciate, in other bases the same rules as in base 10 won’t apply, but there may
be more, even. For instance, in base 12, we can immediately tell by the units digit whether our
number is divisible by 2,3,4 6 or 12. For 8 and 9 we only need consider the last two digits of our
number and similar rules to those in theorem 8.1 apply for divisibility by 5, 7, 11 and 13. Thus it
would be easier to factorise numbers if we used base 12 to do all our arithmetic.

In fact, any of the work we have done and will do in this course is independent of the base
in which it is done; we can apply the sieve of Eratosthenes or do number theoretic functions or
cryptography in any base.
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9 Further Uses of the Euclidean Algorithm

As we saw in section 1.3 we can apply the Euclidean algorithm to any two integers to find their
greatest common divisor. Alternatively we can also use it to find all solutions of linear Diophantine
equations and also new representation for rational numbers and even some transcendental numbers.

9.1 Solution of Linear Diophantine Equations

As described above we consider 67
24 :

67 = 2× 24 + 19, k0 = 2
24 = 1× 19 + 5, k1 = 1
19 = 3× 5 + 4, k2 = 3
5 = 1× 4 + 1, k3 = 1
4 = 4× 1 + 0, k4 = 4

and

r -2 -1 0 1 2 3 4

kr 2 1 3 1 4

αr 0 1 2 3 11 14 67
βr 1 0 1 1 4 5 24

We form this table using the ki and the relations

αr = krαr−1 + αr−2 βr = krβr−1 + βr−2

and notice that the final column contains our original a and b. We shall show that the penultimate
column gives a particular solution of the linear Diophantine equation ax− by = (a, b).

Lemma 14 The equation ax+ by = c is solvable if and only if (a, b)|c and if x = x0 and y = y0 is
a solution then all solutions are of the form x = x0 + bt

(a,b) and y = y0 − at
(a,b) , t ∈ Z.

Proof: The condition for solvability is necessary and sufficient by noting that we can restate
the equation as ax ≡ c mod b, which, by theorem 3.3, is solvable if and only if (a, b)|c.

We note that the given x and y are solutions since

ax+ by = ax0 +
abt

(a, b)
+ by0 −

bat

(a, b)
= ax0 + by0 = c.

Suppose x = u, y = v is a solution which is not of the given form so that

au+ bv = c = ax0 + by0 (10)

⇒ a(u− x0) = b(y0 − v)

⇒ a

(a, b)
(u− x0) =

b

(a, b)
(y0 − v).

Thus a
(a,b) divides the right hand of equation (11) and, since it is relatively prime to b

(a,b) by lemma

1.3 we have a
(a,b) |y0 − v and so v = y0 + t a

(a,b) , contrary to our assumption. �
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9.2 Matrix Representation

We can rewrite the working for the Euclidean algorithm in terms of matrices as follows:

(
67
24

)
=

(
2 1
1 0

)(
24
19

)
(

24
19

)
=

(
1 1
1 0

)(
19
5

)
(

19
5

)
=

(
3 1
1 0

)(
5
4

)
(

5
4

)
=

(
1 1
1 0

)(
4
1

)
(

4
1

)
=

(
1 1
1 0

)(
1
0

)
.

Putting these together we get(
67
24

)
=

(
2 1
1 0

)(
1 1
1 0

)(
3 1
1 0

)(
1 1
1 0

)(
1 1
1 0

)(
(67, 24)

0

)
,

and this is true in general so that(
a
b

)
=

n∏
i=0

(
ki 1
1 0

)(
(a, b)

0

)
.

The partial products of the matrices give us the parameters αi and betai as(
αr αr−1
βr βr−1

)
:=

r∏
i=0

(
ki 1
1 0

)
(11)

and we note that if we define α−1 := 1, α−2 := 0, β−1 := 0 and β−2 := 1 to initialise the recurrence
relation then(

αr αr−1
βr βr−1

)
:=

(
αr−1 αr−2
βr−1 βr−2

)(
kr 1
1 0

)
=

(
αr−1kr + αr−2 αr−1
βr−1kr + βr−2 βr−1

)
,

and we see why the previously stated recurrence relation holds.
Since the product of matrices in equation (11) has determinant (−1)r+1 we can invert any of

the matrices we have used and, in particular, when r = n (so that αr = a and βr = b) we have(
(a, b)

0

)
= (−1)n−1

(
βn−1 −αn−1
−βn αn

)(
a
b

)
and so (a, b) = (−1)n−1βn−1a − (−1)n−1αn−1b, giving us a solution to our Diophantine equation
from which we can generate all others as shown above.
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9.3 Continued Fractions

The parameters ki have other significance too - by dividing each line of the Euclidean algorithm
by the quotient we get equations like this:

67
24 = 2 + 19

24
24
19 = 1 + 5

19
19
5 = 3 + 4

5
5
4 = 1 + 1

4
4
1 = 4

so that 67
24 = 2 + 1

1+ 5
19

= 2 + 1
1+ 1

3+4
5

= 2 + 1
1+ 1

3+ 1

1+1
4

. This is the continued fraction representation

of a number and is usually written in the more convenient form (2; 1, 3, 1, 4).
Any rational number can be written in the form (k0; k1, k2, . . . , kn), and this representation is

unique if we insist that kn > 1 (otherwise we can also have (k0; k1, k2, . . . , kn − 1, 1) as a valid
representation). Each continued fraction is also unique (given kn > 1) and we can find the value of
it using the recurrence relations developed in the previous section as follows:
What is the value of (0; 3, 1, 1, 5) ?
We form the table as before:

r -2 -1 0 1 2 3 4

kr 0 3 1 1 5

αr 0 1 0 1 1 2 11
βr 1 0 1 3 4 7 39

and thus the fraction is 11
39 . We can easily check this with a calculator by entering 11

39 as a
decimal and repeatedly doing the following: subtract the integer part, note it down and then take
the reciprocal.

Exercise 33 Find the fractional representation of (1; 4, 1, 2, 3) and the continued fraction repre-
sentation of 44

31 .

You may have considered the fact that the method for finding the continued fraction represen-
tation of the fraction will actually work for any decimal, and indeed it will, although one must be
careful of rounding errors on some calculators. For instance, we can investigate π, and find that its
continued fraction representation starts (3; 7, 15, 1). If we just consider the first two figures we see
that (3; 7) is equivalent to 22

7 , that well known approximation to π.

Exercise 34 What fraction do the first three figures give you ? To how many decimal places is it
accurate ?

We shall now move back to simpler numbers which do have a pattern in their continued fraction
representation, although they are still non-terminating. Consider

√
3, which has the form (1; 1, 2),

where the bar represents repeating digits, as we do with non-terminating decimals. We can see
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that it repeats as follows:
√

3 = 1 +
√

3− 1

1√
3− 1

=

√
3 + 1

2
= 1 +

√
3− 1

2

2√
3− 1

=
2(
√

3 + 1)

2
= 2 + (

√
3− 1)

1√
3− 1

= . . .

We can do this analysis for any expression involving square roots, with more or less work. I find
it easier to try to find the pattern on the calculator first and then do the arithmetic to check that
there hasn’t been a rounding or any other kind of error.

To reverse this procedure, we continue as follows: for x = (0; 1, 4, 2), we reorganise this to get
an expression for the repeating part alone, so y = 1− 1

x = (0; 4, 2). We then express y in terms of
itself, and get the long form expression of the relation y = (0; 4, 2, y)

y =
1

4 + 1
2+y

=
2 + y

4(2 + y) + 1

=
2 + y

9 + 4y
,

so that y(9 + 4y) = 2 + y. We solve 4y2 + 8y− 2 = 0 to get y =
√
6−2
2 (we take the positive solution

since we know y must be an positive number). We can then substitute this into our expression for

x and, simplifying, we get x =
√
6
3 . We can check this has the required continued fraction using a

calculator, and also I recommend that you check the expression for y too, as it is easy to make an
arithmetical error.

Exercise 35 Find the continued fraction expression for 3−
√

7 and which surd expression has the
continued fraction (1; 2, 5, 2).

10 Advanced Techniques

We now look at ways to apply the knowledge we have learnt so far in the course in more complicated
ways:

10.1 Primality Testing

Currently, the only way we know to prove a number n is prime is to try to divide it by all the prime
numbers up to

√
n. This soon becomes prohibitively time consuming once we get larger values of

n. Thus we need to find a new method, or at least to refine our techniques. We shall see that it is
easier to prove a number is not prime, but this at least helps us to dismiss candidates for primality
more easily than finding a large divisor. The basis for the technique is equation (4), which can be
rephrased to say:

if n is prime then bn−1 ≡ 1 mod n for all b (12)
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Thus, if we can find a b such that equation (12) is not satisfied then we can deduce that our
particular n is not prime. It is possible to prove that, so long as equation (12) is not satisfied by
all b (such a value for n is called a Carmichael number), it is satisfied by at most half, and so if
we choose i values for b at random and get the answer 1 each time we know that either n is prime
or Carmichael or there is a 1 in 2i chance that it is composite. Thus, in practice we choose i = 3
or 4 and if we find that our n is composite we are happy, otherwise, we forget that n and choose
another, hopefully easier, one.

Note that this method doesn’t tell us any of the prime factors, just that the number is not
prime. Note that since Carmichael numbers do exist, it is impossible to use this method to prove
that any number is prime. The following theorem gives us some information about Carmichael
numbers:

Theorem 10.1 Let n be an odd composite integer.

1. n is not a Carmichael number if there is any prime p such that p2|n.

2. if n is a Carmichael number then (p− 1)|(n− 1) for all p|n.

Exercise 36 Prove that 561 satisfies both the conditions in theorem 10.1.

10.2 Factorisation

Now we know a good way to prove numbers composite but one which does not give us the factors
directly we need a new technique. Of course we can still use trial division for the smallest primes,
say 2-31 (Maple uses 2-200), but once beyond there we need a more efficient idea. We shall look
at Fermat factorisation, which is useful when there are no small factors in our number and the
number breaks into two numbers which are close together. We note that if n = ab and we can write
a = t+ s and b = t− s then n = t2 − s2 and so s2 = t2 − n. Thus, we take values of t just greater
then

√
n and subtract n and take the square root, which will be s. If this number is an integer we

can easily find a and b and hence factorise n. However, it is sometimes easier to instead start near√
kn (for small odd values of k), since we can then find not only factorisations in which two factors

are approximately equal, but ones in which there exist factors which are twice, or three times the
other. If we use even values of k it is necessary to consider half-integers, which complicates matters
greatly.

For example, to factorise 9523, we can calculate
√

9523 > 97. Taking t = 98 we get s =√
(9604 − 9523) = 9. Hence a = 98 + 9 = 107 and b = 98 − 9 = 89. If we try to factorise

18881 by the same method we would start with t = 137 and would need 22 tries before we got
18881 = (159+80)(159−80). However, if we use

√
3× 18881 > 237 we get the answer immediately,

since 2382 − 3× 18881 = 1 and so we can write

3× 18881 = 237× 239,

and deduce that 239 is a factor of 18881, and so the other factor is 79.

Exercise 37 Factorise 8265, 16157 and 19637.
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Pollard p− 1 Factorisation

We have a number n which has been proven to be composite, but no factors are known. We form a
sequence of numbers ai, starting with a randomly chosen a0. Given ai, we calculate gcd(ai − 1, n)
and if this is greater than 1 then it is a factor of n. If not we generate ai+1 ≡ ai+1

i mod n by the
repeated squaring method if necessary and repeat the step until a factor is found, or i becomes too
large to handle. If no factor is found then the process can be repeated with a different choice of a0.

For example, we try to factor 323: Choosing the start number a0 = 26, we first check gcd(26-
1,323) = 1 since 25 = 52 and 5 doesn’t divide 323. We then calculate a1 := 262 ≡ 30 mod 323
and gcd(30-1,323)=1 since 29 is prime and doesn’t divide 323. Next we calculate a2 := 303 ≡
191 mod 323 and then check gcd(191-1,323). Using the Euclidean algorithm we get 323 = 2 ×
190− 57 and 190 = 3× 57 + 19 and 57 = 3× 19 so 19 is a divisor of 323, which we can check, and
see that the factorisation of 323 is 19 × 17. Note that this algorithm doesn’t necessarily find the
smallest factor, and the factor found and the time taken depends on the starting value chosen.

Pollard Rho Factorisation

This time, to factorise n, we choose two numbers, a and b, and use the recursive formula xi+1 ≡
xi

2 + b mod n with x1 := a. We want to check when gcd(|xi − xj |, n) > 1 in which case this will
again be a factor. However, it is a lot of work to do this for each possible pair of values for xi and
xj so we use a method which won’t always find the first available pair of values, but will overall
find a pair quickly. We keep track of special values of xi, those when i is a power of 2. We let the
last such xi be y. We then utilise each new xi generated by calculating gcd(—xi− y|, n) each time.

The procedure would go as follows for n = 713 would go as follows, supposing we choose a = 19
and b = 10:

1. x1 := a = 19, let y := x1 = 19

2. x2 := 192 + 10 = 371, check gcd(371-19,713)=1, set y := 371

3. x3 := 3712 + 10 ≡ 42 mod 713, check gcd(371-42,713)=1

4. x4 := 422 + 10 ≡ 348 mod 713, check gcd(371-348,713)=23

Therefore 23 is a factor of 713, as we required. If this step hadn’t worked we would have set y := 348
and generated x5 through to x8.

10.3 Public Key Cryptography

In all the cryptosystems we currently know, once we know the parameters used to encrypt a message
is is quite easy to reverse this transformation and hence the decryption method. The idea behind
public key cryptography is that even if we know the encryption parameters it is still mathematically
difficult (perhaps even impossible) to calculate the decoding formula.

The most widespread method of public key encryption is called RSA, and it gets its security
from the difficulty of factorising large integers. Each user chooses two large (say 100 decimal places)
prime numbers p and q and calculates φ(pq) = (p− 1)(q− 1) = pq− p− q+ 1, and selects a number
e less than this relatively prime to both p and q. The encryption key then uses pq and e, and the
encoding method is to take the value of each letter in our word and raise it to the power e mod pq.
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In order to decode, we need to find the inverse of e mod φ(pq), since aφ(pq) ≡ 1 mod pq. This is
easy if we know p and q, but almost impossible with current computer power and techniques if we
don’t.

Thus, in practice, everyone who wishes to use RSA to communicate with anyone just publishes
their values of pq and e, and the person will encrypt the message for them using these numbers.
However, no-one else can work out e−1 mod φ(pq), and so only the intended recipient can read the
message.
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